Chapter 09.01 – Mild Cured Bacon

Introduction to Bacon & the Art of Living

The story of bacon is set in the late 1800s and early 1900s when most of the important developments in bacon took place. The plotline takes place in the 2000s with each character referring to a real person and actual events. The theme is a kind of “steampunk” where modern mannerisms, speech, clothes and practices are superimposed on a historical setting. Modern people interact with old historical figures with all the historical and cultural bias that goes with this.


*  A note on this letter. In reality, I have searched for this information for almost 7 years. I had various clues that such an invention was made, but for years could find no details of it. When I found it, it was such a monumental occasion that I celebrate it by attaching photos to the chapter which are associated with my best memories of my relationship with Minette, my wife.

Mild Cured Bacon

March 1891

Dear Minette,

It is Sunday. I arrived in a small town with Andreas and his dad on Friday. The plan to go away this weekend was made long before I arrived, and I insisted that they leave the plans unchanged. Since I got to Denmark I wanted to write but have been unable. My first week was so monumental that in a way, I already achieved everything we’d set out with this journey. It all came together in one volcanic lecture by Jeppe on Friday. 

I expected a slow introduction into the art of curing bacon on the scale the Danes do it. I was completely wrong! Almost right at the outset, on my first day at Uncle Jeppe’s curing plant, I saw in operation exactly what I set out for when I left Cape Town. The understanding dawned on me that Friday. I sit by the window in my very small hotel room looking out onto the main street of the beautiful town from where I am writing to you.  Suddenly I am very tired.  For the first time in a while, I am able to exhale. The thing that I came to Denmark first to learn about English curing of hams and bacon weighed on my mind. I was worried that it was an unnecessary detour before I would get on with discovering the inner workings of the new curing chambers in England. Suddenly I am convinced that I am in exactly the right spot on earth where my goal will come to fruition and still, the overarching thought in my mind is not our imminent success in South Africa, or bacon curing or science but it is you. (1)

You are pure and volcanic. You contain in your being the tempests that lash the great Cape land. The spirit of every wild animal and bird who makes the Table Mountain range their dwelling is in you.  You are the arch mother of every ancient inhabitant of this land. The peoples who lived here even before the Khoe of the San moved down. This position you hold not by birth but by decree of the Ancients! Suddenly I think of us and the beauty of being with you and sharing the bounty of whatever this great land has to offer. The quest I am on is meaningful only because I can share it with you and the fact that life was good to me and allowed me to discover the truth behind exceptional bacon at my first port is magnificent. You are the first person I share this with. This is not my quest but ours; nor is it my triumph!  It is ours! Like you, it is grace!

The Industrialisation of Bacon

On Friday morning, Uncle Jeppe called me to his office after I’ve spent a week in his factory. It was only the two of us. “Eben”, he said, “it’s time we have a talk. I have a story to tell you. I know why you are here and will tell you what you are looking for.” Since I started in his factory, he rotated me between his different departments. I did deboning to learn the different cuts. I did meat trimming. The departments that I liked most were brine preparation, pickling, and smoking.

I walked up the stairs in the very industrial-looking building. In his office, I settled in the chair in front of his large desk.  He sat forward in his chair and folded his hands in front of him. He spoke with a heavy Danish accent. “You will find very few places on earth who cure their bacon the way we do in this factory. Ya, in Denmark you will, but in no other land. How you ended up coming here, yes, of course, that is a miracle. You could not have known what I am about to tell you. Few people do. You came here because your ancestors hail from Denmark and the spice trader in Johannesburg talked you into it and fobbed you off on Andreas.  You told me, you and Oscar met the spice trader purely by accident! This is most amazing and it makes the fact that you started with your quest in Denmark even more remarkable!”

Uncle Jeppe continued. “There is only one other place on earth where they cure bacon in the way we do and that is in Ireland. The reason for this is very simple. The invention is Irish! They invented the process!”

I was most intrigued! “The very early details are sketchy, but here is how I understood the development to have happened. “I believe the man responsible for the invention was a prolific chemist, William Oake. For sure it is reported that he was from Ulster in Northern Ireland. I was told by friends that the earliest mention of mild cured bacon, as it became known, came from Antrim, Northern Ireland as far back as 1837. It is fair to conjecture that the invention did not happen far from there. The report that William Oake from Ulster invented the process and the earliest reference to “mild cured bacon” coming from Antrim correlates since Antrim is in Ulster.”

Jeppe continued to tell me that it is this exact system of William Oake sometime before 1837 that is now used in his factory and across Denmark. “Since you are now familiar with our processes,” he continued, “it will be more meaningful to enlighten you with the details of Oake’s invention today than it would have been to do so last Monday when you started!” He continued to explain.

Salting and draining on the floor

Jeppe proceeded by asking me what the first step is in his curing process. “The flitches,” which is what the sides of bacon is called, “are put on the factory floor which must be made from concrete. We lightly sprinkle it with saltpetre so that any leftover blood is drawn from the meat. After this, the curing tanks are stacked.”

Tanking or brining (stacking and pickling) for 7 days

“Before we put the meat in curing tanks, the bottom of the tank is sprinkled with salt. One row of flitches is stacked on the bottom. We lightly sprinkle saltpetre over them with sugar and salt. The next layer of flitches is stacked on top of the first but done crosswise. This is again sprinkled exactly as was done with the first and so it is repeated till the tank is full. A lid is now placed inside the tank with an upright on top and pickle is poured into the tank. The lid and upright serve the purpose of keeping the bacon sides submerged. The pickle is made as follows: To every 10lbs. of salt we add 8lbs. of dark-brown sugar; 1 lib. of spice, and 1/2lb. of sal-prunella.” Sal prunella is a mixture of refined nitre and soda.  Nitre is refined saltpetre used in the manufacturing of explosives.  We make the mix strong enough to float an egg; we let it settle a bit and then skim any impurities off before we pour it into the tank. (3) Saltpetre plays a very important role as does the grade of saltpetre used. It is important to turn the meat over after forty-eight hours into another tank.  The meat that was on top is placed at the bottom of the next tank. Salt, sugar, and saltpetre are again used exactly as it was done during the first salting. Now the real trick comes in. The same pickle is used!”

Maturing/ Resting and Drying for 21 days

“After seven days the flitches are removed and stacked on the floor putting some salt between each layer. We are careful not to stack it higher than four sides deep, until it has been on the floor for some days when it should be turned over, and stacked higher each time until the fourth week from the day it went into the tanks; the bacon will then be cured.”

Washing, drying, trimming and smoking

“We then place the bacon in tanks of cold water.  Here it is soaked overnight. The next morning we wash them well with a brush. Whether smoking is done or not after tank curing the meat should be rinsed off and dried before ageing or maturation. The reason for this is that the meat pores should be closed leading to a hardening of the surface and a considerable reduction in the drying rate. The meat is trimmed and hung till it is properly dried. It is then smoked. (3) 

Uncle Jeppe continued to refer to the steps which are followed in his factory, reading them from a printed piece of paper. “You agree, Eben, these are the steps we follow in my factory?” to which I nodded in affirmation. “I am, however, reading the steps of Oake’s process as he explained it to an apprentice who years later wrote it down,” Uncle Jeppe said, showing me the piece of printed paper which was torn from a book. The Danish and the Irish method is the same thing!”

“Of course,” Uncle Jeppe continued, “it remains a question of exactly what was Oake’s invention! Did he invent the different steps or was he merely responsible for combining different elements that were invented by others?” “It is likely that Oake only combined the best available date at the time into a logical process but in order to have done it in this way, one can also see that he has a detailed understanding of the natural sciences.” This got my attention immediately and suddenly I was back in Africa on the great plains, riding transport and musing about the mental world of the modern cognitive and conscious human. I realised that the work of Oake was in the metaphysical realm as opposed to the natural. He had to look at work as a stepwise process, combining logical actions in a sequence in such a way that the optimal outcome is guaranteed in terms of the quality of product and quantity produced. He was, in a way, mimicking the actions of biology in terms of the conservation of energy, the most logical next step, the utilisation of available resources and the self-regulatory nature of what later will be described as feedback loops”. It was brilliant and the entire endeavour was first conceptualised in his mind!

Comparisons with Dry Curing

Comparing Oake’s new system with dry curing and barrel pork curing of the time highlights the improvement of his system and showcases his brilliance.

– Dry Cured vs the Oake System: Salting

Remember that during dry-cured salting, the meat is placed in a wooden casket. Salt was sprinkled in the bottom of the casket where the meat was kept during the process and it was laid with its skin down on top of the salt, beginning with hams (legs) and shoulders and then the small pieces on top.

– Dry Cured vs the Oake System: Drying and Resalting

The old system of dry curing required that the meat be left in the casket for 4 or 5 days before it is removed and thoroughly rubbed with salt again. Blood and meat juices that drained out into the casket were cleared out at this point only. In contrast, William Oake’s new system called for the extraction of excess meat juices before the meat is placed in the caskets and then for cover brine to be added.

Far fewer meat juices were thus extracted in Oake’s system compared with traditional Dry-cured systems. A principle used to remove the excess meat juices by Oak and in the Dry-Cured system was eluded on by none other than Liebig who said that the preserving power of salt was not due to the chemistry of salt or some secret power contained in it but due to the fact that it drew out the moisture from the meat. Oake explains that it was believed that salt drew out the albumen from the meat and it is when water comes into contact with the albumen that putrefaction sets in.”

The essence of the invention, according to Oake speaks to this exact point. According to him, it is that the meat is cured while the albumen remains in the meat. (2) The point ultimately speaks to quality, but the fact is clear that this “less salty bacon” gave rise to the name “mild cured bacon.”

– Dry Cured vs the Oake System: Resting (equalising)

“At this point, we are 7 days into the curing. William Oakes use of liquid brine which covers the meat in the tanks has by this time penetrated the meat and diffused throughout its structure. The old system has only achieved the removal of the excess juices and the application of salt which now started to ingress slowly into the meat. The application of pressure during the curing step in Oakes tanks had the effect of “massaging” the meat lightly which would have assisted with the ingress of the liquid brine. Re-stacking of the flitches also had the effect of making the brine available to all the meat. Small and big pieces would have equal time exposed to the brine over the 7 days of brining.

In the old Dry Curing system, after the first week of salting the meat, it was rested for roughly the same time as curing to allow the salt to completely penetrate through the meat. It is therefore also referred to as the equalising step. How long the meat rested depends on the size of the piece. As a very general guide, the rate of penetration of the salt into the meat is estimated at around 2.5cm/ week. The small pieces, placed at the top, will be done two weeks later and could be removed. Small pieces can, therefore, be salted and rested in 19 days. The casket is repacked with only the large pieces. It was important to rotate the larger pieces so that the ones that were at the bottom are placed at the top and those at the top, at the bottom. The reason for this is that pressure interferes with the spread of salt through the meat. Shoulders will be thoroughly salted in about three weeks and hams in four.

Oake’s system overcame the challenges by using liquid brine and the changing pressure of being at the top of the tank and in the next rotation, at the bottom.”

– Dry Curing vs the Oake system: Rinsing

“Whether smoking is done or not, whether Oake’s system is used or traditional dry curing, after equalizing which in the Oake system happens simultaneously with the curing step in the tanks, the meat should be rinsed off and dried before ageing or maturation. The reason for this is that the meat pores should be closed leading to a hardening of the surface and a considerable reduction in the drying rate. The world’s best butchers recommend an ambient temperature for dry-cured bacon of between 7 – 13 deg C. After drying, the meat will be well prepared for smoking and, if Dry Curing is done, a ripening stage follows.”

– Dry Curing vs the Oake System: Drying

“Oake uses a completely different method to dry his bacon. In general, the first way that bacon was normally dried was through salting. As we said before, the main purpose of salting was to remove water which is the matrix that bacteria use to do what they do. Without moisture, bacteria can not do their work of consuming food from the environment and excreting toxins and other metabolic byproducts with off flavours and disagreeable taste. The second, third and fourth way is through the use of heat, airspeed and relative humidity.

“In a Dry Cured system, before smoke is applied, the meat is first dried for 2 – 3 days, with high humidity around 66% to 75% with a very light breeze/airflow. High air velocities will influence the quality of dry-cured ham negatively. The surface layer of ham or bacon will dry out and collapse. The diffusion rates in the meat and outside must be the same to achieve an efficient and uniform drying process. The air velocity must be very low and the air circulation must be uniform to ensure uniform air temperature and relative humidity through the curing chamber. Otherwise, the meat could be spoiled by microorganisms. In the end, the meat needs to be tacky to the touch for the smoke to adhere.”

Oakes system very cleverly used pressure, no doubt in combination with relative humidity, temperature and airspeed, but he makes no mention of the last three. Humidity, temperature and airspeed are important because we know that the higher the temp, the lower the humidity and the higher the airspeed, the dryer the end product and the greater the weight loss will be. His system does not have the huge weight loss of dry-cured bacon and he very cleverly used pressure to achieve much faster what temperature, humidity and air speed normally do. The pressure is achieved by stacking the flitches outside the curing tank on the level floor after brining and resting or equalising and then incrementally increasing the weight on the bacon as the flitches are re-stacks with the ones at the bottom now on the top and by stacking them higher and higher every time it is restacked while always rotating the position of the meat pieces.”

– Dry Curing vs the Oake system: Time

“The overall time of Oake’s system was 21 days from the time when the meat went into the tanks. After this, it is left in freshwater for one night and dried. The old system required the meat to be rested for between 3 and 4 weeks depending on the size of the meat. The total process would therefore be completed in between 4 to 5 weeks or between 28 and 35 days. It meant that the new system was between a week and two weeks quicker than the old.”

– Dry Curing vs the Oake system: Quality

“William Oakes system materially improved the quality of bacon. At the time, bacon was a very salty affair. Oake removed the need for high salt levels by a number of techniques that we already discussed. He used liquid brine in combination with pressure adjustment through re-stacking to facilitate a quicker ingress of brine into the meat. He facilitated the drying of the meat after curing with the application of pressure. As a result of his overall system, the bacon would not have lost as much weight as in a dry-cured system. Salt in meat are concentrated through the process of drying and by keeping things relatively “moist”, he achieves less weight loss and therefore a less concentrated salt taste experience by the consumer.

The other way that he achieved a higher quality product was by major improvements in hygiene. The point should not be lost that his entire system hinged on his ability to manage hygiene differently (better) in that a wetter product is far more susceptible than a dry product to bacterial spoilage. So, he hard-wired hygiene by limiting the continual contamination of the meat through contact with wood as is the case with barrel pork or dry-cured bacon cured in wooden caskets. We know that wood is a major contributor of undesirable micro in any meat factory and his application of baths, constructed from concrete was a major advance in sanitary conditions in the factory and his overall product quality.”

– Dry Curing vs the Oake system: Re-using of old brine

“The biggest benefit to consumers of the new system was the improved taste. The benefits to the curing company would be on two levels. On the one hand, is the speed of curing which became increasingly important as industrialization took hold and the concept of the factory. The other was the fact that expensive brine in Oake’s system was continually re-used. “Friends of mine,” Uncle Jeppe said “suggested similar techniques on the re-use of brine to me as far back as 1830. The question comes up if this was Oake’s invention.

The cornerstone of mild-curing is the continual use of old brine! It is what reveals the genius of Oake the clearest! He discovered it during the process of evaluating the preservation properties of different aspects of the curing process. What is it that causes bacon and ham to last a long time? He evaluated salt and discovered that on its own it does not have much antiseptic power. The other ingredient regularly used is saltpetre and similarly, it is not very antiseptic if compared to things like boric acid. Even combining it does not offer good preserving properties, but the re-use of old brine is a different matter. If the same brine is used over and over again and never replaced, it continues to give exceptional preserving power. Oake’s training as a chemist taught him that there had to be something from nature at work but even if he is unable to identify it. He chose to rather harness it than explain it. This meant that his observations were very similar to that of Polenski. Polenski understood it. Oake used it!

Some of the men working with me on the floor call it the mother brine. Andreas’ mom tells me that the same thing happens when she makes sourdough bread. They keep a small piece of dough that they constantly feed and re-use. They call it the mother dough. In some households, there are doughs of which the age is measured in generations. In the same way, the bacon or ham brine is reused for many years. The older the brine, the better! When it becomes a bit muddy, all you do is boil it and leave it to cool down.  Let any sediment sink to the bottom and scoop the clear brine off after you remove any impurities that may have floated to the surface.  (5)

Jeppe suggested that we look carefully at reports from 1830 in The Complete Grazier where mention is made of the re-using old brine. The report says that wet cure is more expensive than dry cure unless the brine is re-used. First, the meat is well rubbed with fine salt. A liquor is then poured over the meat and “though the preparation of such brine may, at first sight, appear more expensive than that prepared in the common way, yet we think it deserves a preference, as it may be used a second time with advantage if it be boiled, and a proportionate addition be made of water, and the other ingredients above mentioned.” (The Complete Grazier, 1830: 304)

The “other ingredients above mentioned” refers to the following. “First, let two ounces of saltpetre, one pound and a half of refined sugar, and four pounds of common salt be boiled in two gallons of pure spring water, over a gentle fire, and the impurities, that may rise to the surface, be carefully skimmed off. When this brine is cold, it should be poured over the meat, so as to cover every part.” (The Complete Grazier, 1830: 304)

Three observations should be made here. The 1830 description indicates that this process is still in its infancy. Liquid brine, it says, may appear to be more expensive than if it is done “in the common way” which in the context should refer to dry curing or rubbing a mixture of dry ingredients onto the meat. Secondly, the edition of the Complete Grazier quoted is from the 5th edition which means that by this time, the description may already be 5 years old if it appeared in the 1st edition. The 3rd observation is that the brine can be used “a second time.”

This means that even though the practice of reusing old brine was already described in 1830, possibly as early as 1825, it is still a far cry from the complete system of William Oake and the multiple (continues) re-use of old brines which is one of the cornerstones of the mother brine or live brine system of tank curing. It definitely describes the start of the invention. The continual re-use of the brine and packaging it within a factory context was then the brainchild of William Oake.

It shows clearly that by the 1830s which coincides with Oake’s invention of mild curing, the practice of re-using the brine was being phased into curing techniques in England. William Youatt who compiled the Complete Grazier repeats this process in his 1852 work, Pigs: A Treatise on the Breeds, Management, Feeding and Medical Treatment of Swine; with directions for salting pork, and curing bacon and Hams. Here he writes, “in three weeks, jowls, &c, may be hung up. Taking out, of pickle, and preparation for hanging up to smoke, is thus performed: — Scrape off the undissolved salt (and if you had put on as much as directed, there will be a considerable quantity on all the pieces not immersed in the brine; this salt and the brine is all saved; the brine boiled down [for re use].” Notice that his 1852 description is far more “matter of fact” and he does not go into all the explanations and caveats he did in the 1830 description.

Youatt gives an important clue about the possible origin of the re-use of brine and it is not surprising that he points to Germany. The region of interest is Westphalia. In the above-mentioned publication, he writes, “The annexed system is the one usually pursued in Westphalia: — ” Six pounds of rock salt, two pounds of powdered loaf sugar, three ounces of saltpetre, and three gallons of spring or pure water, are boiled together. This should be skimmed when boiling, and when quite cold poured over the meat, every part of which must be covered with this brine. Small pork will be sufficiently cured in four or five days; hams, intended for drying, will be cured in four or five weeks, unless they are very large. This pickle may be used again and again, if it is fresh boiled up each time with a small addition to the ingredients. Before however, putting the meat into the brine, it must be washed in water, the blood pressed out, and the whole wiped clean.”

It was this link with Westphalian hams that introduced me to the name they gave for the brine that was boiled between the batches as the Empress of Russia’s Brine. (for a detailed treatment of the link between Westphalian hams and bacon and the Empress of Russia’s brine, see Westphalia Bacon and Ham & the Empress of Russia’s Brine: Pre-cursers to Mild Cured Bacon) Upon investigation the Empress of Russia which is being referred to was none other than the legendary Catherine the Great of Russia. During her reign salt was heavily taxed. She had a lively interest in the latest developments in food technology and the excessive cost of salt was a major concern for her. It was under her rule that she or someone in her court suggested that instead of discarding old used brine, the brine should be boiled, impurities removed, and it should be used repeatedly. The reason for doing this was not to lose the salt that was still in the brine. Her brine, called the Empress of Russia’s Brine contained salt, sugar and saltpetre.

Bacterial reduction of saltpetre (nitrates) to nitrites in the old brine would have caused the curing of subsequent batches to be sped up considerably. I have no doubt that this led directly to the discovery of William Oake that it was not necessary to boil the brine between batches and all that was required was to replenish the salt, sugar and nitrates (saltpetre) as was prescribed by Catherine the Greats brine.

Westphalia hams were famous for their use of the Empress of Russia’s brine from a time before it was introduced in Ireland and the cold smoking process which was unlike anything being done at the time when “chimney smoking” was the order of the day.

Of great interest is the same report that appeared in the Belfast News-Letter (Antrim), 1841 Belfast News-Letter.

This is important because I did a survey of the occurrences of the word “mild cured bacon” in old newspapers. The very first reference goes back to 1837 to a report from Antrim, Northern Ireland.  It is fascinating that following this initial reference, Antrim completely disappears from the map and Limerick and Waterford take over.  This report simply said about bacon arriving from Ireland and that the Bacon market was dull the past week but for “a small parcel of mild cure.”  (Belfast News-Letter (Belfast, Antrim, Northern Ireland) 21 July 1837) Before this date – nothing. No mention at all! There are many references from Limerick and Waterford from the 1840s and 1850s onwards.

So, here is what I think happened. I think that the Empress of Russia’s brine was known in Antrim, one of the counties in Northern Ireland. It is very important that the first mention in a newspaper of mild cured bacon occurs in Antrim. The report said, “a small parcel of mild cure.”  (Belfast News-Letter (Belfast, Antrim, Northern Ireland) 21 July 1837).  Following this initial reference, Antrim completely disappears from the map and Limerick and Waterford take over. The Freeman’s Journal (Dublin, Dublin, Ireland), 23 September 1853, reporting that the previous Wednesday, letters from London “announced the disposal of the provisions contract for the Royal Navy, 12 000 tierces (casks) of pork and 4000 tierces (casks) of beef.”  The short notice says that “we have the satisfaction to add that half the pork contract was taken for Irish account, and a considerable portion will be made up in Limerick, by Shaw and Duffield, William G. Gubbins, William Oake, and Joseph Matterson.” The article is quoting the Limerick Chronicle. It would seem that after William Oake invented his mild cured system, he re-located to Limerick. Following the 1837 mention of Antrim, mild cured bacon is most often reported as being produced in Limerick and Waterford.

What I think happened was that William Oake got some exposure to the Empresses special brine. It is even possible that he knew that this brine was different from other brines in that it cured the meat faster. I base this on the statement often repeated when the use of old brine is mentioned that it is used “with advantage.” It was clear that something was different about it. Catherine’s brine was boiled between batches to essentially recover the salts in line with recognised techniques in use in Russia to recover salt for centuries. They would have noticed the difference in the speed of curing. I suspect that William Oake, a trained chemist. It was known that bacteria existed since the 1600s when the microscope was finding its way into scientific investigation (Lauren Learns the Nitrogen Cycle). That Oake would have had an inkling of the possibility that it would have been due to bacterial action can not be dismissed. However it happened, possibly through experimentation and observation, Oake figured out that the boiling step in Catherine’s brine was not necessary. The progression was Irish but most certainly, the inspiration was Russian!

Based on the Youatt reference quoted above that the concept of the re-use of old brine came from Westphalia, it is possible that the invention of the Empress of Russia’s brine came to Ireland from Russia, through Westphalia.

Remember that Catherine’s invention of her brine (or the invention by an unknown court official) was based on the fact that salt was an expensive and scarce resource and the initial motivation was to save. Look one more time at the 1830 reference from The Complete Grazier which we looked at above. The issue at hand was likewise the cost of the brine. A liquor, poured over the meat as a brine and “may, at first sight, appear more expensive than that prepared in the common way, yet we think it deserves a preference, as it may be used a second time with advantage if it be boiled, and a proportionate addition be made of water, and the other ingredients above mentioned.” (The Complete Grazier, 1830: 304) The link with Catherine’s brine is unmistakable!

Comparisons with Barrel Curing

Jeppe wanted me to see Oake’s invention not just in contrast to dry curing but also the wet curing techniques which existed. He pulled a document from his bottom drawer. “Here we have a report on the production of barrel pork which comes to us from 1776. He read from it carefully and slowly, as if he saw it for the first time and did not want to miss a point. “After the meat has cooled,” probably after the hair was removed, “it is cut into 5 lb. pieces which are then rubbed well with fine salt. The pieces are then placed between boards and a weight brought to bear upon the upper board so as to squeeze out the blood.” “You see,” Jeppe interjected an editorial comment, “the value of ridding the meat of excess juices before salting and curing was appreciated for some time well before Oake!”

He continues reading, “Afterwards, the pieces are shaken to remove the surplus salt, [and] packed rather tightly in a barrel, which when full is closed. A hole is then drilled into the upper end and brine allowed to fill the barrel at the top, the brine being made of 4 lb. of salt (1.8kg or 10%), 2 lb. of brown sugar (0.9kg or 5%), and 4 gallons of water (15L or 84%) with a touch of saltpetre. When no more brine can enter, the hole is closed. The method of preserving meat not only assures that it keeps longer but also gives it a rather good taste.”  (2) It is noteworthy that taste has remained a constant feature in the improvement on the brining technology and the consumer’s experience of milder salted bacon became the name given to the products of Oake’s system: Mild Cured Bacon!

Quality Ingredients

Oake insisted on quality ingredients. This is highlighted by his use of sal prunella.  He used a very pure form of saltpetre. Not the kind that is used as fertilizer, but the kind that is used to make black powder. The Irish were, at the time of Oake’s invention, actively experimenting with preservatives in their medical universities. Uncle Jeppe said that he “believes the invention was in part done, because of knowledge they developed on how to preserve human bodies for the purpose of gaining medical knowledge or training physicians. Oake was probably trained by men, proficient in the morbid arts.”

Smoking Bacon and Hams

The step that rounds the bacon off is smoking which, I learned, does not always have to be done. The English love unsmoked bacon or green bacon as they call it. I have spent two weeks in the smoking department. The most important point I learned is to have the smoke as cool as possible before coming into contact with the bacon.  This is the reason why the bacon or hams should hang as high as possible from the fire below. The floor should be 6ft. 6in. or 7ft. from the ground with only a slight opening between the flooring boards to allow the smoke to make its way up to where the bacon is hung.

The flitches or hams should be hung as close together as possible, but should never touch. This will allow the smoke to penetrate from every side. The men who work in the department try and teach me as much as possible so that when I get back to Cape Town, I can build a perfect smokehouse. They tell me that a small slide can be put in the gable of the smokehouse to regulate the smoke as required. A place should be made in the centre of the floor, say 6ft. by 3ft., where the sawdust is placed. This is lighted, and if the door is kept closed there will be no flame, but the sawdust will smoulder and cause a great quantity of smoke. From twenty-four to forty-eight hours will suffice to properly smoke the bacon if the weather is suitable, after which it may be packed and forwarded to market.  Where tea tree (Melaleuca) is obtainable it is excellent for smoking; it imparts a flavour to the bacon which is much appreciated by many people. (6) A proper smoking cycle will look as follows: Day one: 8 hours smoke and rest overnight; day two to eight will be the same which gives you 48 hours of smoking.

This is exactly what I was hoping to learn from the Harris operations in Calne. I don’t even know if they use this exact system, nor do I care right now. The system is fast, cheap and the results are spectacular. My dad would approve of the quality and this is really all I need. It is a perfect model to follow back home.  What I have been learning in Denmark is unique. I thought this is how all Europe is doing it. The uniqueness of the system blows my mind.

This was my first major introduction to what later developed as the science of industrial processes. Not only was I hooked on the concept of bacon production, but the underlying science fascinated me. A vague concept started to form in my mind that our industrial design is effective or not in how it relates and mimics actual biological and mechanical processes of the natural world. In years to come, these principles would become fundamental to my view of life! Oake became more than my introduction to bacon production. He became a raw model for industrial process design!

Uncle Jeppe was very pleased with himself. He could see that I am completely astonished. He placed the papers he was reading from in a neat bundle back on his desk and folded his hands in satisfaction. “How closely does this describe what we do in our factory and the mild cure process of William Oake!” “Almost 100 years later, we continue to progress these concepts. A recent development is pressure pumps to inject the brine into the meat through needles instead of simply leaving the meat in the tanks to diffuse into the meat. This latest invention calls for a plank to be run across the barrel opening. The meat is placed on the plank for injection with between one and three needles. The three needles are fed brine through a hand pump that would pump brine directly from the barrel. The barrel is half-filled with brine. After the meat has been injected, it is pushed off the plank, to fall into the brine which acts as a cover brine. It would remain in the cover brine the prescribed time before it is removed and smoked. This technology must now be incorporated into the tank curing system.”

The Danes are an impressive nation with a thoroughness about them which is remarkable. I am amazed at Uncle Jeppe’s knowledge of the art and how it was progressed by the Irish. He has friends all over the world who correspond with him regularly so that he is constantly learning. It is very impressive and I am honoured to know him!

How did it get to Denmark?

Uncle Jeppe sat back in his chair and wiped one hand over his face. “Now young man, he continued, how did it happen that this perfect system of bacon production ended up in Denmark before almost any other nation on earth even heard of it?” As if he really ponders the point he gets up and looks out of the window onto a lush green garden below from his second-story office. He has a conversation with himself. “A very good question! Indeed, a very good question!”

“The year was 1880,” he began answering himself. “Denmark is a tiny nation. To remain competitive, we realised many years ago that we have to learn as much as we can from other nations and peoples and adapt. Every industry is constantly looking at where new discoveries have been made and how we can adapt. This is very Danish.”

“Nine years ago, this factory did not exist nor did we know how to make industrial bacon. We were large dairy farmers and a sizable pork industry developed from the by-products of dairy farming. It was very simple and profitable. Raise pigs on the byproducts from milk and sell it to England and Germany. Someone from the pork industry learned about the new mild cured bacon produced in Ireland. We tried many times to send people to learn the techniques, but the Irish were careful not to employ the young Danish men we sent over for employment in their large bacon plants. We needed an opening in their market to go and learn. Such an opening was presented through industrial action by their workers. The thing about Ireland is that the workers often go on strike and how they are treated by the companies they work for is often very harsh. Those on strike do not get paid and stand a large chance to be laid off.”

“In 1880 there was a strike among butchers in the Irish town of Waterford. Some shrewd members of the Danish pork processing guild happened to be in Ireland at that time, in Waterford and at the promise of lucrative employment in Denmark managed to persuade a number of the striking men to return with them to Denmark. In Denmark, we quickly arranged for them to train our butchers. It was at such a training seminar where I learned the art.”

Uncle Jeppe learned the art of curing bacon the Irish way from these Irish butchers and so did many other Danish butchers. I am exhausted.  This is not the end of Uncle Jeppe’s Friday revelation to me.  How and why the Danish people overnight became the largest curers of bacon on earth is the second instalment of this great story.  It is important, particularly to us in South Africa because it gives a model for our bacon curing company.  It is the secret of how we will be able to raise the cash needed to put a factory up to accommodate this exact system. It is no less important than what I just described, is not a single point.  Nor is it less interesting. The story will keep you riveted like a good novel, but my mind is shutting off. I need rest and will continue tomorrow. Tonight I will sleep well! 

After you read my letters, please show them to my mom and dad and please mail them to Oscar. How I wish that you were here with me today! Off all the days since I am gone, I miss you more than ever tonight!

Much love!

Eben


Further Reading

The Mother Brine

Chapter 11.04: Wiltshire Cured or Tank Cured Bacon

Tank Curing Came From Ireland

Westphalia Bacon and Ham & the Empress of Russia’s Brine: Pre-cursers to Mild Cured Bacon


green-next
green-previous
green-home-icon

(c) eben van tonder

Bacon & the art of living” in bookform

Stay in touch

Like our Facebook page and see the next post. Like, share, comment, contribute!

Bacon and the art of living

Promote your Page too

Note 1:  The actual event was when I visited an English town with Jeppe.  I was sitting at the window looking out on the main town square, writing an email to the kids.  I very homesick and felt that I have achieved my goal being in Egland.

Note 2: The exact quote about the system invented by Oake is, “He discovered that the antiseptic properties of salt were to be found apart from chloride of sodium (salt), and that the obnoxious effects of dissolving the albumen in the curing process could, therefore, be avoided. This is supposed to be the key to the new system of curing. By the new process of treatment, it is said that the bacon and hams, although thoroughly cured with the very essence of salt, still retain all the albumen originally in the meat, and yet do not taste salty to the palate.”  (Molineux, 1898)

Note 3:  “As the carcasses are cut up the portions are laid on the floor of the factory (which should be made of concrete or flagged), flesh uppermost, and lightly powdered over with saltpetre, so as to drain off any blood. It can then be placed in the tanks for salting in the following manner: — Sprinkle the bottom of the tank with salt, then put in a layer of sides or flitches, sprinkle saltpetre over them lightly, and then salt and sugar. The next layer of sides or flitches is put in crosswise, and served in the same way, and so on until the tank is full. Then place a lid to fit inside the tank (inch battens 3in. apart will do) ; fix an upright on top of the lid to keep the bacon from rising when putting in the pickle. The pickle to be made as follows : — To every 1Olbs. of salt add 8lbs. of dark-brown sugar, lib. of spice, and 1/2lb. of sal-prunella. Make it strong enough to float an egg ; let it settle for some time, then skim, and it is ready to go on to the meat.”  (Molineux, 1898)

Explanatory note by Eben:  Note Sal-Prunella is, according to Errors of Speech or Spelling by E. Cobham Brewer, Vol II, published by William Tegg and Co, London, 1877, a mixture of refined nitre and soda.  Nitre, as used at this time was refined saltpeter used in the manufacturing of explosives.

Note 4: “At the end of forty-eight hours turn the meat over into another tank, taking care to put the sides that were on top in the bottom of next tank, treating it as regards saltpetre, salt, and sugar exactly the same as at first, and using the same pickle. It can then remain until the seventh day from when first put in. It can then be taken out, and stacked on the floor of the factory, putting some salt between each layer, but do not stack higher than four sides deep, until it has been on the floor for some days, when it should be turned over, and stacked higher each time until the fourth week from the day it went into the tanks; the bacon will then be cured.

The bacon can then be placed in tanks containing cold water, and allowed to soak all night. Wash well with a brush, then hang up to dry, and when properly dry it can be trimmed and smoked.”  (Molineux, 1898)

Note 5:  “The same pickle can be used for many years — the older the better; it only requires, when it becomes somewhat muddy, to be boiled and clarified. I have seen pickle which had been used in one factory for sixteen years, and that factory produces some of the best bacon and hams in Australia.”  (Molineux, 1898)

Note 6:  “Smoking Bacon and Hams.  The smokehouse should be built according to the intended output of bacon and hams, and the walls of the building should not be less than 12ft. high. One of the principal things in smoking bacon is to have the smoke as cool as possible before coming into contact with the bacon, and to assist this it is well to put a floor 6ft. 6in. or 7ft. from the ground, just allowing a slight opening between the flooring boards to allow the smoke to make its way up to where the bacon is hung. The flitches or hams should be hung as close together as not to touch, so as to allow the smoke to penetrate every portion. A small slide can be put in the gable of the smokehouse to regulate the smoke as required. A place should be made in the centre of the floor, say 6ft. by 3ft., where the sawdust is placed. This is lighted, and if the door is kept closed there will be no flame, but the sawdust will smoulder and cause a great quantity of smoke. From twenty-four to forty-eight hours will suffice to properly smoke the bacon if the weather is suitable, after which it may be packed and forwarded to market.

Where teatree (Melaleuca) is obtainable it is excellent for smoking ; it imparts a flavor to the bacon which is much appreciated by many people.”  (Molineux, 1898)

Note 7:  “Mild-cure Bacon. — In all of the large cities of Britain and the European continent, the public demand is for mild-cure bacon. The system of cure is very simple and perfect, but requires expenditure of at least £1,000 on the plant for carrying it out. By this process the albumen of the meat is retained and is not coagulated, so that the bacon is devoid of excessive salt, is by no means hard or dry, and there is no loss of weight in the curing. A factory costing £2,000 to construct could easily cure 400 pigs per day. The process takes about a month to complete, but after the first day there is no further labor involved.”  (Molineux, 1898)

Note 8:  Quote from Holland, LZ, 2003: 9, 10

References:

Bacon Curing – a historical review

Belfast News-Letter (Belfast, Antrim, Northern Ireland), 26 Oct 1841, Tue

Fereira, J..  Treatise of Food and Diet.  Fowler & Wells.  1843.  P 109, Sodium of Chloride

The Mother Brine

Molineux, (editor).  1898.  The Journal of Agriculture and Industry of South Australia, Molineux was the General Secretary of Agriculture, South Australia, Volume 1 covering August 1897 – July 1898 and printed in Adelaide by C. E. Bristow, Government Printer in 1898.

Tank Curing Came from Ireland

—————

Image Credits:

Robert Goodrich and members of the Salt Cured Pig

Photos of Minette and I taken by myself

Chapter 09.00: The Denmark Letters

Introduction to Bacon & the Art of Living

The story of bacon is set in the late 1800s and early 1900s when most of the important developments in bacon took place. The plotline takes place in the 2000s with each character referring to a real person and actual events. The theme is a kind of “steampunk” where modern mannerisms, speech, clothes and practices are superimposed on a historical setting.  Modern people interact with old historical figures with all the historical and cultural bias that goes with this.


The Denmark Letters

An iconic photo of Oscar, Eben, and Jeppe at the Cavern Club in Liverpool (Jeppe is Danish and worked as a big projects man for Tulip in the UK on bacon factories) taken on 2012/03/18.

I arrived in Denmark (1) in February 1891 after a tiring journey through Hull in England on the Steamship Salmo (2).  It was a homecoming of sorts.  My ancestors hail from the Danish city, Tønder (German: Tondern or Tuner).

Three brothers came to South Africa from this small border town. Adolph (Adolf), the oldest, born in 1674, Andres Cornelsen, born in 1676 and Johannes, born around 1706.  Their father, Albert Cornelsen, was a peasant from the Danish/German border town, Tønder.

Tønder is a farming community surrounded by unspoiled lowlands and marshland that became famous for its lace industry.  Andres Cornelsen was not the oldest but took the lead to go to Cape Town.  He was endowed with an unusual mix of courage, and an appreciation for adventure and leadership.

In Amsterdam, he joined the VOC probably solely motivated by economic hardship. He was employed on the VOC ship, “Huis te Bijweg,” bound for the Cape of Good Hope.  He was listed as “Andres Cornelsen from Tonder” and at the Cape, he adopted the surname “Van Tonder.” (3)

He sailed from Amsterdam on 9 May 1699 and arrived at the Cape of Good Hope on 21 Oct 1699.  Shortly after his arrival he was given freedom from his employment to the company and allowed to choose between the life of a farmer or doing an apprenticeship.  He wisely chose the latter. Being a free farmer was an extremely hard life.

Vrijburgers (free citizens) were given contracts to farm along the Liesbeeck River. Here they ‘put forth their hands to work’ under unimaginable harsh conditions. They were mostly illiterate with little or no knowledge of farming. They were to plant clops ‘without delay’ along with the odd vine cutting that Van Riebeeck, the Dutch Governor, forced on them. The crops they plant crops had to be different from what was already under cultivation by the company.

High on their agenda would have been to urgently build themselves some sort of shelter for protection against the elements and lions, leopards, and other predators. The Khoi were also taking up arms, rightfully angry at being pushed off their traditional grazing lands.

The VOC paid the vrijburghers barely enough for them to settle their ‘start-up loans’ let alone make any profit. Almost 190 men were given their Letters of Freedom over a five-year period by Jan van Riebeeck and of these, fewer than 3 was left by May 1662. Some passed away, some ran away and many opted to re-apply for employment with the VOC. These burgers all discovered that ‘freedom’ actually meant living in abject poverty. Cleverly,  Andres Cornelsen decided to become a miller instead (3), avoiding much of these hardships.

His brothers soon followed him to the Cape and together they became the clan heads to the Van Tonder’s of South Africa.  So it happened that my voyage to Denmark became a journey back to the land of my forefathers.

It was deeply meaningful that I returned to their land to gain knowledge which they developed and we are now in need of at our new home at the tip of Africa, to sustain ourselves and ensure our survival.  I did not yet know how they would help us to learn an English bacon curing technique but I decided to trust my new hosts on this point.

Arriving at the free harbour of Copenhagen was impressive.  There were enormous cranes and every conceivable equipment for the handling of goods.  Commodities were loaded and offloaded.  Cotton, petroleum, corn from New York and pork from Chicago. (4)

They tell me that 35 000 sailing vessels and steamers land at this harbour each year.  The day we arrived in Copenhagen there were steamers from around the world. Many from Russia, three from England, three from Germany, one from the West Indies, one from South America and one was leaving port for Greenland. (4)

The number of people milling around on the peer intimidated me.  It felt if there were more people than the total number living in Cape Town.  I stood a bit sheepishly aside, observing the commotion.  Soon, most of the just over 200 passengers and their welcoming parties left, leaving the crew and dock workers to get stuck into the task of offloading the steamer.

A tall, slender man in his early 30’s was leaning against a lamp pole close to the ramp onto the ship, smoking a cigarette.  He was well dressed in a brown sports jacket, light pants, leather shoes, and a light cap.   He was looking very disinterested as workers hustled to and fro.  I approached him.  Tentatively I asked, “Andreas Østergaard?”

While taking another puff from his cigarette he answered, “Yea, and you must be Eben!  Welcome to Denmark.”  He stretched out his hand and greeted me.  Before I could let go of his hand he started walking down the pier towards the harbour gate. “Come, let’s go!”

Andreas was the young friend of the spice trader that Oscar and I met at the Mount Bay Hotel in Pritchard Street in Johannesburg.  Soon we were travelling on the city tram and then by train to his home in the outskirts of Copenhagen.

First impression of Copenhagen is that it is clean and very orderly.  Andreas tells me that almost 500 000 people live here.  I was mesmerised by the magnificently constructed buildings.  I learned later from people who travel a lot that not even in Amsterdam are there such beautiful buildings. (4)

They solved the problem of keeping the city clean by employing the poor quite brilliantly as teams of able-body paupers, wearing black clothes and wooden shoes who clean the many city squares.  Each man carrying a watering can and a huge broom.  Regiments of these men perform this function at regular intervals. (4)

The city is different than I am used to in many ways.  Size changes everything.  Businesses are bigger and oddly arranged. Shops are located on the second stories of buildings lining the streets of the city centre.  Huge factories all lay on the outskirts. (4)

We stopped at a pub.  Andreas wanted to learn about our plan.  He ordered a beer and I asked for wine.  Everybody in the pub looked up.  The bar lady was slightly thrown off.  “Wine!” she gasped,  “I am sure we have a bottle somewhere!”  She disappeared into the back and emerged with a bottle in hand with not a small air of satisfaction. (5)

Andreas was not surprised that there was no company in Cape Town curing large quantities of good quality bacon.  He asked me many questions that I could not answer.  I knew how to do dry-cured bacon and my dad’s molasses bacon, but knew nothing about the chemical process of bacon curing or the modern techniques of making it.

Bacon was a prized dish at the Cape of Good Hope from the earliest times.  Local bacon was generally over-salted and one could only eat it after soaking it in freshwater.  It was typically made with the old recipe we also used as a family.  The problem was that every butcher and farmer did it differently and many took shortcuts, trying to get to the final product without waiting the month it needed to cure.  Pork was in many ways staple meat for sailors in the days before refrigeration.

It was one of the easiest animals to take alive on the ship for slaughter during the voyage. This practice led to a brilliant idea for ships to set pigs free on uninhabited islands to provide food for shipwrecked sailors. (6)  When the Dutch East Indian Company set up their refreshment station at the Cape in 1652 they did it for a similar reason as pigs were left on islands namely to ensure the supply of fresh meat along with the obvious supply of fresh water for ships travelling to the East.  The Dutch brought domesticated European pigs on the three ships which arrived in Table Bay Harbour in 1652.  These died within months of landing and piglets did not live longer than a few days.  Later on, two varieties of pigs were found at the Cape.  A Dutch breed and a Chinese breed that had dainty meat and claws like dogs. (7)

The earliest bacon found at the Cape was so heavily salted that it could be left in the storeroom for over a year without spoiling and even seawater could be used to draw out the salt.  In the early days at the Cape, bacon was the meat that was most often dispatched to outposts such as Land van Waveren, Hottentots Holland, and Outpost 1 at Saldanha Bay, making it an essential commodity at the Cape.  (7)

Much has changed by the mid-1800s.  The imported bacon was far less salty but local bacon still had to be left for a few hours (up to 16 hours) in freshwater.  The butchery trade at the Cape was well established by early German and Swiss immigrants and stood on the shoulders of a very tentative pig breeding industry.  Techniques used by butchers were slow and all the butchers in Cape Town put together, found it hard to supply bacon to the booming Cape Colony.

When I left the Cape, the last thing my dad told me was “Become number one!  Learn how to be the best!”  I smiled when he said this, thinking, “Yes, Dad, that is the plan.”  Looking back I realise that I did not have a clue what those words meant.

For the following 12 month’s I lived with Andreas and his parents in Copenhagen while working at a local bacon curing company, owned by farmers in a cooperative scheme unique to Denmark and managed by a bacon legend, Hendrik Jeppesen.  In the day Uncle Jeppe, as we called him, trained me, which included lectures during lunch breaks on Tuesdays and Thursdays.  In the evenings, after supper,  Andreas’ dad read for us from a book called Foods, written by an Englishman and afterwards we would discuss it. This discussion after supper was a Danish tradition.

Denmark was an important city to visit for men from science and industry and in the following year, Uncle Jeppe and Andreas ensured that I met many of these men.  I always had a notebook with me to jot down new information.  I wrote letters back home to my kids, my parents, Oscar and Minette.  I did it because I wanted to have a record of what I learned as a backup in case I lost my notebook or if it would be destroyed by whatever means.  I wanted my kids to have it, even if they would appreciate it only in later years.  Importantly, it became a way to give investors a picture of what their money was being used for.  More than this, it was the story of a great adventure.

What follows is then my collection of Denmark Letters written in the year 1891 and 1892 from Copenhagen.  I present them in date sequence. Generally, my goal was to write one letter every month.

There was one other reason why I wrote.  It was because I missed my kids, family, and friends.  There were days when I rushed home after work and could not wait to share what I learned.  Sometimes I met people who gave me such a clear vision for the future that I could fly back to Cape Town on mythical wings and strategize with Oscar – I did the flying when I wrote these letters.

There were days, however, when I would sit at a street cafe or in my room and as I wrote, tears would be in my eyes. The fact is that I missed these people so much.  They are my entire world and everything I learn and experience, every person I meet, are all meaningless without them. Family and friends give life meaning and purpose for the greatest adventures!

I was overcome by the excitement of the moment and for a time there were so many new things to learn that life took on a new meaning. Gone were the doubts about the temporary nature of our sojourning on earth, the mental world of culture, language, religion and my newfound love of science. I was surrounded by men and woman, steeped in a deep understanding of the laws of our natural world and it would be the education in these laws that would ultimately bring me full circle back to the human dilemma of having minds with which we perceive the eternal and the fixed while trapped in the temporal and the fleeting! The temporal and fleeting world I found myself in was all brand new, glittering and exciting which dulled the nagging questions born in the plains of Africa. The story of my Danish adventures and discoveries are in my letters that follow.


green-next
green-previous
green-home-icon

(c) eben van tonder

Bacon & the art of living” in bookform

Stay in touch

Like our Facebook page and see the next post. Like, share, comment, contribute!

Bacon and the art of living

Promote your Page too


Notes:

(1) Eben and Chris arrived in Copenhagen on Sunday, 9 October 2011.  It was the first destination on an extensive European and UK trip to investigate bacon production methods, ingredients, and equipment.  At the airport, they were welcomed by Andreas Østergaard.  Andreas spent almost two months with us when we opened our factory in Kraaifontein, helping us to start production.

(2)  Steamship Salmo.

salmo
  • Built. 1891 (IMO 5600223)
  • Yard. Lobnitz & Co
  • Class of Ship. Passenger steamship
  • Operator. DFDS 1891-1935
  • Route. Harwich – Esbjerg 1892-1904
  • Length. 209.5 ft.
  • Gross Tonnage. 1032
  • Passengers. 243
  • Speed. 11 Knots
  • Status. Scrapped 27/05/1935

(http://www.norwayheritage.com/)

(3)  First Considerations – the Van Tonder Family

Available in PDF:  first-considerations-the-van-tonder-family-30-october-2016

van-tonder-family-crest


30 October 2016
by Eben van Tonder

SUMMARY

Who were the first Van Tonder’s to come to South Africa, what was their standing in Denmark and why did they leave the land of their birth?  We examine these questions briefly.

INTRODUCTION

Three Van Tonder brothers came to South Africa from Denmark. Adolph “Adolf” van Tonder was the oldest of the three brothers, born in 1674 in Tønder. Andres Cornelsen, the second oldest of the three was christened in Tønder, Schleswig, Denmark, on 3 September 1676.  Johannes van Tonder was born sometime between 1646 and 1706 (we assume the 1706 date without any good reason).  Their father was Albert Cornelsen, from Tønder.  Some genealogy sites list him as Cornelis Jansz which is not the case according to Andres Cornelsens’ christening record.

Of the three brothers who came to South Africa, we know the most about Andres Cornelsen and almost nothing further is known about his brothers.  The important fact for our journey is that they came from Denmark.

VERSIONS OF ANDRES CORNELSEN’S NAME

Several versions of his name exist.  In the christening records from Tønder on 3 September 1876, the spelling is Andres Cornelsen without the Tonderen or Tønder, indicating that neither he nor his father used the surname at this time.

andres-cornelsen-christening-entry-from-3-september-1676
The spelling of Andres Cornelsen from the entry on the day of his christening from 3 September 1676.

The entry on his enlistment into the VOC on 9 May 1699 gives his name as Andries Cornelis uit Tonderen.  (http://vocopvarenden.nationaalarchief.nl/detail.aspx?ID=1602176)

Two important observations.  It seems as of the “uit Tonderen” was added to simply indicate where he came from.  His second name is given as Cornelis and not Cornelsen.  The “sen” meant “son of,” in other words, “Cornels’ son“.  His fathers’ name is given as Albert Cornelsen which meant that his second name was also Cornel, as was his fathers’.

At the Cape of Good Hope, an entry is made when he marries Cornelis de Vrij where his name is spelled Andries Cornelissen Van Tondern where he retained the “sen” version of Cornel or Cornelis and added “Van Tondern” as a surname.

andries-corneliz-huwelik

THE EVOLUTION OF SURNAMES

The fact that he used Van Tonder as a surname was not an uncommon practice.  In Denmark, surnames were sometimes taken that referred to occupations (e.g., Møller – miller, Schmidt – smith, Fisker – fisher) and sometimes to places, for example, that of a village or farmstead inhabited by ancestors.  Such is the case with Van Tonder.  (The University of Copenhagen, Unit for Name Research)

The first naming act, issued in 1526 in Denmark, made heritable names compulsory but was only applicable to nobility. In successive centuries, other higher class people took surnames passed on through heritage.  Clergy often Latinized their surnames (e.g. Pontoppidan made from Broby) and artisans often Germanized their surnames.  (The University of Copenhagen, Unit for Name Research)

In the Duchy of Schleswig, naming acts applying to all citizens were only issued in 1771 and in 1828.  The fact that when he was christened in 1676, he did not have a surname, shows that he was was not from nobility or one of the “higher classes” of people like clergy or middle-class landowners.  He was in all likelihood a peasant or ordinary citizen, looking for a better life at the Cape of Good Hope.  (The University of Copenhagen, Unit for Name Research)

THE USE OF THE TOWN NAMES IN SURNAMES

The fact that Andres Cornelsen used “Van Tonder” as a surname at the Cape of Good Hope was in keeping with an already established tradition that was surely known to him.

There is evidence that the surname Tonder was in general use by the early to mid-1600’s, especially among landowners from Norway.  Peder Christophersen Tønder is one example of such a family.  He was born on 8 September 1641  in Kristiansund and died on 1 June 1694 in Dønna.  He was a Norwegian district governor and landowner.  (Weidling, T. ed.; 2000: 310-311).  His grandfather was a citizen of Tønder, Niels Mortensen (1550-1602), who became the patriarch of many  with the surname Tønder. (da.wikipedia.org/wiki/Tønder (slægt))

Peder Christophersen Tønder’s father was Christopher Nielsen Tønder (1587-1656) who came to Norway.  His brothers became the archdeacon in Trondheim , magister Ole Christophersen Tonder (1633-1684), the president and mayor of Trondheim, Anders Christophersen Tonder (circa 1615 – 1696).  From him descended a long line of military men who were middle-class landowners in Norway.

It seems as if the practice of using Van Tonder or Tonder or some slight variation as a surname was common in Holland in the 1700’s amongst men working on board VOC ships. All these, presumably from Tønder in the 1600’s and the early 1700’s.

  • Jurg Tonder from Hamburg started working for the VOC between 1751 – 1753.
  • Johan Nicolaas van Tondert from Lubeek worked for the VOC between 1790 – 1791.
    Jacob Tonder from Langedaalbeen worked for the VOC for a few months in 1749.
  • Paulus Tondere from Bergen worked for the VOC between 1729 – 1733.
  • Jan Pieterse van Tonderen from Rotterdam worked for the VOC a few months in 1734.
  • Pieter Tondert from Dronthem worked for the VOC between 1741 and 1742.
  • Jan Andriesz van Tonder from Holsteijn worked for the VOC for a few months in 1723 before he passed away.
  • Jacob Tonder from Amsterdam worked for the VOC between 1745 and 1748.
  • Pieter Ottho van d r Tonder worked for the VOC for a few months in 1717 when he passed away.
  • Emanuel Tonder from Bengalen worked for the VOC in 1775 for a few months and deserted.
  • Mattijs van Tonderen from Amsterdam worked for the company between 1709 and 1712.
  • Hermanus van Tonderen from Groningen worked for the VOC between 1787 to 1799.
  • Jurgen Tonder from Dromtom worked for the VOC between 1686 and 1687.

The surname was in some use in the 1600’s among Norwegian landowners and peasants who moved to Holland.  It became more common in the 1700’s but it seems as if the use in relation to Andres Cornelsen was initially to simply indicate where he came from and not part of a surname as we know it today.  Neither him nor his father used it as a surname before he moved to the Cape of Good Hope.

It is unlikely that there is one central ancestor to all the Van Tonder’s or Tonder’s in the world based on the early widespread use of the town’s name in surnames.  In South Africa, at least early in the existence of the Dutch at the Cape, all Van Tonder’s presumably come from one of the three brothers who came from Denmark based on the fact that there is no record that I could find of another Van Tonder coming to South Africa on a VOC ship in the 1600’s and 1700’s.  It is of course entirely possible that later on, Van Tonder’s came to the country who are not direct descendants from on of the three brothers or from their father on another ship besides one belonging to the VOC.

In light of the number of “Van Tonder’s” or “Tonder’s” who worked aboard ships for the VOC who all docked in Cape Town, it is a remarkable fact that only three brothers made it to Cape Town by 1699 and stayed, directly from Tønder in Schleswig, Denmark and not one of the “surname-sake’s” from Holland or Germany.

ANDRES CORNELSEN COMING TO AFRICA

Andres Cornelsen came to the Cape of Good Hope on the VOC ship “Huis te Bijweg.”  He sailed from Amsterdam on 09 May 1699 and arrived at the Cape on 21 October 1699, employed as a ship’s hand (experienced sailor), tasked to man and fire one cannon. We have a further clue to his financial standing from the fact that he made a small loan from the company which was recorded against his name (as a schuldbrief)   (vocopvarenden.nationaalarchief.nl)

He worked for the Dutch East Indian Company (VOC) as a farm hand (boerkneg), becoming a free citizen (vryburger) on 31 August 1700 when he left the employment of the VOC. He continued his apprenticeship as a miller in the Stellenbosche district. (stamouers.com)

ANDRES CORNELSEN AS FREE CITIZEN/ VRYBURGER

People initially came to the Cape, working for the Company (VOC) and some remained at the Cape and became free citizens when their employment with the company ended. At first, a small number of people were allowed to cancel their employment and remain on at the Cape.  Between 1662 and 1666, very few people were granted this privilege, but following 1666 it became more common place. Upon becoming a free citizen, papers of freedom were issued and, in a program to bolster the permanent farming population at the Cape, in many cases, land was allocated to the newly freed burger with strict conditions that you had to remain in the Colony (as opposed to returning to Holland) and rules of inheritance were stipulated and the free citizen (vryburger) had to agree to it. (Geldenhuys, P.; 2015: 23 – 25)

Early on, these farmers were exempt from tax for 12 years and were allowed to trade with the local tribes on condition that they could not offer higher prices than the Company (VOC) was offering. Farm implements were supplied at cost and the Company (VOC) held a mortgage over the property. They could grow crops not already being grown in the Company gardens and the cultivation of cereals was encouraged. They were also allowed to purchase slaves and could not enslave any of the local indigenous people. (Geldenhuys, P.; 2015: 23 – 25)

ANDRES CORNELSINS’ CHILDREN

Andres Cornelsen was the father of Catharina van Tonder (born in 1707). Almost every Afrikaner today have a forefather that was a slave and the Van Tonder genealogy shows that it was no different for them. Nine years after Andreas Cornelius became a free citizen (vryburger), Jan van Tonder was born as his oldest son on 12 July 1709, born out of wedlock with a slave, born in bondage. A birth certificate exists for him.

An interesting entry is found in the records of the VOC where a certain Jan van Tonder was listed as entering the employment of the VOC, not from Holland or Germany as was custom, but from the Cape of Good Hope.  He boarded the VOC ship, Ketel, in Cape Town on 10 March  1737 en route for Ceylon, working for the VOC. (vocopvarenden.nationaalarchief.nl)

The tantalizing possibility exists that this was none other than the, by then, 28-year-old, first born son of Andres Cornelsen, born out of wedlock between AC and a slave.  His second son was Christiaan van Tonder, born on 30 November 1710, a child born out of wedlock with a slave; born in bondage. (personal correspondence with Elizabeth Jacobsz)

There are records of other children born to him. Cornelis van Tonder, born 11 September 1712 and died in 1715 and Johannes van Tonder, born 3 September 1713. (personal correspondence with Elizabeth Jacobsz) Then there was also Cornelus van Tonder born on 24 June 1715, Abigail van Tonder born on 25 April 1717, and 5 others.

What motivated the Van Tonder brothers to come to the Cape of Good Hope?  Were they adventurers, trying to make a name for themselves or secure a fortune or did they try and escape some unfavorable situation in Denmark such as poverty or religious persecution?   What was the religious conviction in this region and what was the likely faith of the Van Tonder brothers and their cultural leniency?

RELIGION IN TØNDER

Tønder was a protestant community, situated in the Dutchy of Schleswig, in the border region between Germany and Denmark.  Schleswig is an ancient Danish region but over the years various parts changes hands between Denmark and Germany.  The Reformation was universally adopted by the northern European states and in particular by German-speaking lands.  This was no different in the Dutchy of Schleswig and the town Tønder.  German replaced Latin in the church services in Schleswig, as opposed to Danish in the nearby diocese of Ribe.  Germanization spread to the region mainly through the church.   By 1699 when Andres Cornelsen was 23, the inhabitants of Tønder would have been Danish citizens with German culture and affinities.   (Rasmussen, C. P..  2010: 172 – 190)

He grew up in a time after the civil war between the Protestants and the Catholics, in a Protestant region.  We know from the fact that his children were baptized (christened) in a Dutch Reformed Church at the Cape of Good Hope, that he was Protestant. Religious persecution could therefore not have been a motivation for his move to the new world.

It is fair to say that the three Van Tonder brothers were in all likelihood conservative Calvinist, possibly Lutheran, Protestant, with a strong affinity for the German culture. They must have been at home in the churches in Schleswig and at the Cape the Good Hope.

THE ECONOMY IN TØNDER, SCHLESWIG  

If his motivation for coming to South Africa was not religious, could it have been economic?

Schleswig was often grouped with the German duchies of the Danish monarchs, especially Holstein. There were times when the dukes of Holstein owned the entire region such as the first half of the 14th century.   The region became part of Prussia in 1864 and only as recent as 1920 did the northern half of Slesvig, where Tønder is located,  vote itself back to Denmark.  (Jacobsen, N. K..  1960:  148)

The region’s economy was devastated by wars between Denmark and Sweden which Sweden won.  The population, both the nobility and the free peasants, developed a version of manorialism, an economic system of the middle ages, which restored economic prosperity.  (Rasmussen, C. P., 2010; 172-190, pp 172-190)

How manorialism worked, broadly speaking, was that large estates and lands,  belonging to the king were awarded to people who performed special service.  Nobels swore and oath of loyalty to the king and in return received the right to control an estate.  The estate strove for economic self-sufficiency.   Peasants worked the fields on an estate and were in many cases bound to the estate.  They had the right to work their own fields by doing a set amount of days work (normally three to four days of work per week) for the Lord of the manor or the estate.  The Lord, in turn, had to provide for those bound to his land in a time of difficulty.  (Patterson, G. M.. 2001:  48, 57)  The Lord of the manor was the land-owner and the peasant was the tenant.

Some of the manors incorporated villages.  Around the manor house or village, there were strips of land.  Some of the land or woodlands were common property and some were assigned to specific peasants.  Peasants not only worked the land of the Lord but also paid taxes. (Patterson, G. M.. 2001:  48, 57)

The genius of the people from the Duchy of Schleswig, both from peasants and nobility, was that manors were established that were not necessarily under the control of nobility, but under that of rich peasants, thus increasing the number of such estates across the region which in turn stimulating the region’s economy and greatly improved the number of tax collectors on behalf of the king.

From the 16th century, the nobles in charge of the manors increased in power, but so did the rights of the peasants.  The rent for the land was fixed as early as the 15th century.    In the first half of the following century, it became law that tenure of peasants was for life.  They could be evicted if they failed to pay their rent, but as long as they did that, their right to their piece of land was for life.

The land of rich peasants in some cases exceeded those of lesser nobles in size during the 1500’s.  They still did not have the same authority or privileges of the nobles and clergy, nor were they referred to as manors.  From the 1660’s common people could possess manors.  In 1661 to 1664 the king handed over almost a quarter of all the land of the kingdom to his creditors, most of whom were middle class, as opposed to nobility.  The common person was given the right to acquire “noble land.”  This was a genius invention and transformed the economy of the region.  The were given the task of collecting taxes and if they were unable to do so, they had to pay the taxes over themselves.  (Sundberg, K., et al.;  2004)

Another industry became central to the economy of this town and was responsible for great wealth namely lace which peaked in the 1600s and 1700s.  Testament to the wealth it brought was the fact that townhouses from this time dominate the town centre. (“Nach der Volksabstimmung” (in German). Deutsches Historisches Museum.)

By the late 1600s when ANDRES CORNELSEN was in his teens, the mood in Schleswig would have been very optimistic. The major wars were fought and prosperity restored to the region.  The common person had more rights and privileges and everybody from the king, to the peasant, were better off.

It seems as if there were neither religious nor a compelling economic reason to have left the land of his birth for the new world.

THE APPRENTICESHIP OF AC AS A MILLER

I am unsure if he started his apprenticeship as a miller in Stellenbosch or if he continued an apprenticeship which he possibly started in Schleswig already.

CONCLUSION

The small loan that Andres Cornelsen took from the VOC when he started his employment with the company en route to the Cape of Good Hope, along with the fact that when he was christened, he did not use a surname that was transferred through heritage points to a peasant ancestry.

He was protestant and from a rural, farming community where he would have been part of the successful economic system of the Schleswig region.  It is interesting that so many people showed up for employment with the VOC from one region during the 1700’s.  I have no clue as to a possible reason for this yet.  Andres Cornelsen, further was, as far as I could determine, one of the first young men directly from Tønder to join the VOC and the fact that he chose to move to the new world is of particular interest.  Much work however still remains and this fact will have to be verified with the VOC records in Holland.

One clear conclusion that flows from this is that he was, contrary to his standing in the economic system of the middle ages, no ordinary person.  Everything we know about him shows unusual courage and strong leadership.  This may account for the reason why we know so much about him and relatively little about his brothers.  If it was indeed his son, Jan van Tonder, born from a slave, who boarded the VOC ship, Ketel, in Cape Town on 10 March  1737 en route for Ceylon, it would show that the same spirit of leadership, adventure and courage was transferred to his son.  It could show something of an intimate relationship he possibly had with probably all his children, including those born from slave woman.  Another fact that showed his leadership was that he took the surname Van Tonder at the Cape of Good Hope.

It is a fascinating quest that I hope to return to often.

(4)  The description of the free harbour and the city of Copenhagen is from an article in the Evening Star (Washington, District of Columbia), 10 October 1903, page 28, America in Denmark.

(5)  This is an exact account of what happened moments after we met Andreas.  During the ride in his car from the airport, I explained some of our plans to him.  After the bar lady got me the wine, he sat for a second and then asked me, “You guys want to do WHAT?”

(6)  There are many accounts that this in reality happened.  It was officially suggested in 1876 by the Saturday Review (London) to stock uninhabited islands with pigs and rabbits to provide for shipwrecked sailors.  (The New York Times, 1876)  In some cases, the suggestion was met with derision, but it was by all accounts a serious suggestion and many lauded the plan. (Chicago Tribune, 1876)

(7)  See Heinrich, 2010, page 31 – 33

References

Chicago Tribune (Chicago, Illinois), 30 Aprils 1876, page 4.

Evening Star (Washington, District of Columbia), 10 October 1903, page 28, America in Denmark

Geldenhuys, P..  2015. Geldenhuys Genealogy,   Descendants of Albert Barends Gildenhuizen.  Peysoft Publishing.

Heinrich, Adam R.  2010.  A zooarcheaelogical investigation into the meat industry established at the Cape of Good Hope by the Dutch East Indian Company in the seventeenth and eighteenth centuries, The State University of New Jersey.

Linder, Adolphe. 1997.  The Swiss at the Cape of Good Hope. Creda Press (Pty) Ltd

“Nach der Volksabstimmung” (in German). Deutsches Historisches Museum.

The New York Times (New York, New York), 9 May 1876, page 6, A Benevolent Scheme.

Simons, Phillida Brooke. 2000. Ice Cold In Africa. Fernwood Press

http://www.norwayheritage.com/ Wilson Line.

Jacobsen, N. K..  1960.  Agricultural Geography and Regional Planning in a Marine Foreland.  Geografisk Tidsskrift, Bind 59 (1960)

Patterson, G. M.. 2001.  Medieval History: 500 to 1450 CE Essentials.  REA.

Rasmussen, C. P..  2010.  “Innovative Feudalism. The development of dairy farming and Koppelwirtschaft on manors in Schleswig-Holstein in the seventeenth and eighteenth centuries,” Agricultural History Review (2010) 58#2 pp 172-190

Sundberg, K., Germundsson. T., Hansen, K..  2004.  Modernisation and Tradition: European Local and Manorial Societies 1500-1900.  Nordic Academic Press.

The University of Copenhagen, Unit for Name Research.

Weidling, T. ed.. 2000. Autocratic men in Norway: civilian central organs and officials from 1660 to 1814 . Director General , Oslo: In cooperation with Messel precursor.

Photo Credit:

Free Harbour, Copenhagen, 1903:  Evening Star (Washington, District of Colombia), 10 October 1903, page 28, America in Denmark

Steamship Salmo:  http://www.norwayheritage.com/ Wilson Line.

Chapter 08.09 David Graaff’s Armour – A Tale of Two Legends

Bacon & the Art of Living 1

Introduction to Bacon & the Art of Living

The quest to understand how great bacon is made takes me around the world and through epic adventures. I tell the story by changing the setting from the 2000s to the late 1800s when much of the technology behind bacon curing was unraveled. I weave into the mix beautiful stories of Cape Town and use mostly my family as the other characters besides me and Oscar and Uncle Jeppe from Denmark, a good friend and someone to whom I owe much gratitude! A man who knows bacon! Most other characters have a real basis in history and I describe actual events and personal experiences set in a different historical context.

The cast I use to mould the story into is letters I wrote home during my travels.


David Graaff’s Armour – A Tale of Two Legends

November 1891

Dear Tristan and Lauren,

Copenhagen continues to enchant us!  Long afternoon walks.  The many coffee shops.  The friendly people.  Denmark is turning into quite an education!  Minette and I had the most unexpected suprise.A completely unexpected visit from our friend, David de Villiers-Graaff. It is a sad reunion as we still mourn the passing of Uncle Jacobus Combrinck last year.  David is on his way to the United States and decided to look in on us to see my progress.

He was regal in his appearance from the moment he stepped ashore off the streamliner. It is only fitting since he is not only in his second term as honourable mayor of Cape Town, but is now also a member of the Cape Colony’s legislative council in the place of Jacobus after his sad passing. (The Colonies and Indian, 10 October 1891, p11) David managed to accommodate a short visit to Denmark en route to Chicago for the World Exposition. (1) (2)

The_Inter_Ocean_Mon__Apr_11__1892_
Drawing of David Graaff in his mayoral robes. The drawing appeared in a newspaper in Chicago on 11 April 1892 when he was interviewed at the World Exposition.

Our friend changed. He has always been serious and driven. There is, however, presently a confidence and focus in him – an intensity than I have never seen before. We are honoured for the few days we have in Copenhagen. (2)

The most fascinating tale is told by David about how it happened in the mid-1880s that he visited Chicago for the first time. On that trip, he met Phil (Philip) Armour. It had a profound impact on him. In many respects, I can see it working out in his ambitions. Drive is something we are born with. David always had a will to do things and energy. Mentors give direction to our drive. Phil Armour gave David a purpose and ambitions for Combrinck & Co. and for the City of Cape Town alike.

The Legendary Phil Armour

Phil is a self-made millionaire who is credited for pioneering the production-line processing by setting up a disassembly line in his enormous meatpacking plant in Chicago. He is the actual inventor of the production line and not Henry Ford as is widely reported. (9) David tells me that last year (1890) Phil slaughtered more pigs than the combined total of all Cincinnati packers. (Horowitz, R., 2006: 50)

This is interesting because Phil (an experienced commodity trader) and his business partner, John Plankinton (an experienced butcher), created the Armour Packing plant in Chicago in the tradition of the Cincinnati packing houses which dominated the pork packing industry until Chicago became the centre of pork processing universe in the USA and wash correctly described as “the hog butcher for the world.” (Horowitz, R., 2006: 49, 50)

It occurred to me that this was a special and important development. Phil, like many of the great packers in Cincinnati (Horowitz, R., 2006: 49, 50) was not a butcher but a trader and a businessman. This seemed to have afforded him the benefit of viewing the pork trade not as an art to be mastered by himself, but as a platform to trade in. Here he is able to anticipate supply and demand, price fluctuations, business structure, and processes in contrast with the German Master Butcher who is a tradesman, narrowly focused on his trade.

The structure of Jeppe’s bacon plant in Denmark is styled after the innovation of Phillip Armour. Phil is called the Napoleon of the Chicago capitalists, the baron of butchers, the king of pork packing and grain-shipping leader of the United States. It is reported that he has an establishment in every city in the USA and his agents are at work for him in every part of the globe. His daily updates come through telegraphs, telex, and telegram. (The Saint Paul Daily Globe, 10 May 1896, p2) His reach is global. Stretching from the “wheat fields of Russia to the grain bearing plains of North India and the markets of Australia and Europe.” Every morning he looks at the globe. Where his products will be in demand and where prices will rise and fall. (The Saint Paul Daily Globe, 10 May 1896, p2) It was no doubt this global view that brought his agents to South Africa where they met David de Villiers-Graaff. (2) (5)

Armour – the Applied of Refrigeration to Meatpacking

By now you should have a firm grasp of the role of nitrates and nitrites in meat curing.  I suspect that Phi was involved in testing nitrites in meat curing long before it was legal to do so in the USA.  This is, however, not his biggest contribution to the trade. Apart from pioneering the production line, Phil’s greatest contribution to meatpacking and processing is the incorporation of refrigeration into the meatpacking plant which allows for curing and packing of meat all year round.

In Britain, the Harris family was responsible for the construction of the first ice house for bacon curing in their High Street factory in Calne in 1856. Jeppe reckons that this is the first time in the world when ice was used to make year-round curing possible. It may or may not be true since ice houses or cellars were used in Cincinnati long before 1856. It is entirely possible that George Harris, who brought the idea back from the USA to England, may have seen ice-cooling in use precisely for bacon curing in the USA. It probably developed very informally as private landowners created ice houses to keep perishables from going bad. Phil may have had just such an ice house on his own property. However the inspiration came to him, he is credited for the incorporation of large scale refrigeration into meatpacking. (Encyclopedia. Chicago history and British History)

During the time when Phil brought refrigeration to meatpacking, Gustavus Swift came to Chicago to ship cattle and developed a way to send fresh-chilled beef in ice-cooled railroad cars all the way to the East Coast. The railroads could not keep up with the supply of refrigerated cars and Phil and other large packers build their own cars and leased them to the railroads. (Louise Carroll Wade. Encyclopedia Chicago History. Meat Packing)

Armour refrigeration car
Armour refrigeration car. Armour had at one point 12 000 refrigerated cars in use across the USA (americanurbex.com)

Three big meatpackers would become legendary. They were Philip Armour, Gustavus Swift, and Nelson Morris. (3)  David was inspired by this and did exactly the same in South Africa when he built his own refrigerated cars.

Armour’s Agents in South Africa

It was an agent of Phil Armour who visited Cape Town in the mid-1880s and called on the largest butchery in town, Combrinck & Co. This visit to South Africa was in response to the discovery of diamond in Kimberly and the goldfields in Johannesburg. (5)  Diamonds were discovered in 1867 by a 15-year-old boy, Erasmus Jacobs, near Hopetown on the Orange River. (6)

Gold was discovered in South Africa in 1884 by Jan Gerrit Bantjies on the farm Vogelstruisfontein. The main gold reef was discovered by George Harrison on the farm Langlaagte in July 1886. (5) (SA History. Discovery Gold)

Phil Armour knew exactly what would follow these discoveries. He made his money in the Californian gold rush as a young man, not from mining claims but by capitalizing on peripheral industries that developed. He started a business in California, employing out-of-work miners to construct sluices, which controlled the waters that flowed through the mined rivers. By the time he turned 24, he had a successful business that earned him enough money to move away from California and start his next venture.

Phil saw what opportunity would follow the discovery of gold and diamonds in South Africa and true to his nature, he investigated the opportunity. He also knew that as the states in South Africa develop, so would our importance as a grain and maize producer. He had many reasons to be very interested in the mid-1880s in developments in the sub-continent.

Mentor – Protégé

225px-Philip_D_Armour_in_the_1880s
Phil D Armour, 1880s

Whatever the exact reason was behind the visit of Armour’s agents to the Cape Colony, at Combrinck & Co they met the man who has been in charge since 1881 (Dommisse, E, 2011: 31), the young David de Villiers-Graaff. A bright-eyed young man with black hair and a distinct black moustache.

David was born with a drive and loads of passion. He had the resources of a successful business behind him which gave him the means. What he now had was an opportunity to be exposed to the world and take Combrick & Co. further and create his own legacy. This was provided by Phil Armour and started with an invitation to Chicago! (2) (4)

David spoke at great lengths about this first trip to Chicago and the meeting with Mr. Armour in his cage-like office from where he manages his considerable international interests. (the cage-like office is described in The Saint Paul Daily Globe, 10 May 1896, p2)

Phil invests in young minds and even though David did not explicitly state this, I can glean from what he tells me that Phil was impressed with the young leader from Cape Town. Phil showed his packing plant to David and especially the refrigeration and refrigeration cars for the railroads. (2)

Phil employes young people of character and seldom fires them. He regularly re-deploys them in other departments in the business as young people often need some time to find their feet and where their true talents lay. He would most certainly have been impressed by David.

David implemented the concept of own refrigeration cars as soon as he got back to Cape Town. He had refrigeration chambers erected for Combrinck & Co. and soon invested in his own fleet of refrigerated cars for the railways.

In a quint coffee shop close to the Abattoir in Copenhagen, I pressed David to list the characteristics of Phil Armour that inspired him most.  I was interested, not only in the mechanics of his business model but also the qualities that the man cultivated.

David was thinking intently, stroking his mustache.  “Phil is an optimist who believes in his country and in the future. (The Saint Paul Daily Globe, 10 May 1896, p2) He saw the end of the civil war, despite the many negative voices to the contrary. He capitalized on low pork prices brought about by speculation that the war would continue, bought up every pig he could get hold off and made a fortune when prices rose on the realization that peace would prevail. (7)”

“He is not scared to take on large challenges. His plans are big and bold and global. (The Saint Paul Daily Globe, 10 May 1896, p2)”

“He invests frugally in education. Mr. Armour donated funds to establish the Armour Institute of Technology in Chicago to give technical training for underprivileged boys. (8)” (Ansci. PD Armour)

A lesson that inspired David and that I take from Phil is that he believes in obtaining a thorough knowledge of any industry he gets involved in. This is why I am in Denmark and why I study as much as I can about bacon curing.

David then made an interesting observation. After supper, David started telling me about the start of Phil’s illustrious career.

Phil was brought up in Stockbridge, Madison County, in the state of New York with six brothers and two sisters. His formal schooling was not the best, but he learned far greater lessons. His mother taught him thrift, energy, the economy of time and speech, the benevolence of heart and a strong common sense. (The Inter Ocean, 7 January 1901, Page 2).

Gold was discovered in California in the spring of 1849. Phil had fallen in love with a girl and became obsessed with the idea of making a fortune on the newly discovered goldfields quickly so that he could return and claim his bride. Having secured the permission of his parents, he joined a small party and set off to the goldfields. None of the party had the means for a sea voyage and they set out on foot. A journey that lasted over six months and took them through rivers and deserts and over mountains with the usual dangers associated with such a long journey. (The Inter Ocean, 7 January 1901, Page 2) An amazing lesson I take personally from this bit of David’s story is that Phil had the respect and relationship with his parents to ask them and secondly, that his parents had the courage to allow him to go! It seems that bold parenting creates bold men!

In the goldfields, he made enough money to form the basis of his wealth. He moved away at age 24 from California to buy a grocery store and later got involved in a meatpacking venture which set him on the course of his life as we know it.

David commented that much in the life of Phil Armour resonated with him. He has never really spoken about his time as a boy on the farm in Villiersdorp to me. Last week in Denmark, he did.

David’s dad, who was a blacksmith on Villiersdorp, was not a wealthy man. There were no good roads to Villiersdorp which contributed to the general impoverished condition in the area. People were poor in possessions, but wealthy in children and in spirit. Kids were put to work from an early age on the farm. Every day’s work was undertaken with a cape made of grain bags to serve as protection against rain and cold. (Dommisse, E, 2011: 21)

As in the case of Phil’s school years, school education was not the best. What they lacked in formal education, they made up in life education. Respect was of great importance. People stood together and supported each other in times of tribulation. When an animal was butchered, people from the entire neighborhood got a meat packet. Trustworthiness in word and deed, industriousness and honesty were instilled from an early age. (Dommisse, E. 2011: 21, 22)

One afternoon Jacobus Combrinck, a respected family member and successful butcher from Cape Town, arrived on their farm Wolfhuiskloof. The custom was for the boys to help with the farm work after school and that afternoon was the 11-year old David’s turn to look after the pigs and stop them from going into the garden. “However, during the hot afternoon, he had fallen asleep under the fig tree. Next thing he knew he was being shaken awake violently while his father was shouting, “Dawie, Dawie, here you are sleeping and the pigs are in the garden!” Combrinck who had seen the whole commotion took pity on the young farm lad, … and immediately asked if he could take him to Cape Town to have him educated properly.” So it happened that the young David Graaff left their farm and moved to Cape Town where he would work during the day in Jacobus’ butchery and study at night. (Dommisse, E. 2011: 24)

David commented that Jacobus himself started to work in a butchery when he was only a teen to help his mom financially after the death of his father. David knew how to set the stage for a point he was about to make, the trait of a good communicator. He leaned back in his chair while all of us were on the edge of our seats. I have never heard him speak so candidly about his past.

“It occurred to me,” he started out, “that the best education revolves around values.” “I found great value in learning, but the values that my parents taught me have always stood me in good stead. It seems to have done the same in the life of Mr. Armour and Uncle Jacobus.”

He was ready to make his second point. He spoke thoughtfully. “A little bit of struggle never hurt anyone! Look at the journey of Mr. Armour. Jacobus and I working full days as children in butcheries. What some people see as a curse can be a blessing for others. It all depends on how you see it.” He then looked at me and said, “The fact that your dreams of a bacon factory are a difficult journey is a blessing!”

I will never forget that night. His point so eloquently made. As I have said, our friend has become a man!

Back to Chicago

David is on his way to Chicago again to meet with Phil Armour, but his focus will be on city business as he is traveling as mayor of Cape Town. He outlined what he intends to achieve at the World Fair. After hearing him talk, I can not wait to get back to see how his many plans unfold. (10)

Use Every Bit Except the Squeal

When I took David on a tour of Jeppes pork slaughtering house and abattoir the next day, David could not stop talking about the impact of Phil Armour and Gustavus Swift on pork slaughtering and how the animal is taken apart for use as primals or sides and the primals turned into bacon.

Mr Armour insisted that every part of the animal be used, contrary to the practice in many parts of the world, including in Cape Town, to dump so-called “undesirable parts of the carcass” in bodies of water, or as we do it in Cape Town, leave it on the beach in the hope that the tide will wash it away. “They devised better methods to cure pork and used lard components to make soap and candles.” (Encyclopedia Chicagohistory) Armour famously said that it is only the squeal of the pig that he does not use.

Armour’s Great Invention – the Production Line

Swift & Co. Packing House, Chicago, 1905. Photo courtesy of the Library of Congress
Swift & Co. Packing House, Chicago, 1905. Photo courtesy of the Library of Congress

It was, however, the consolidation of the ideas around the re-organization of workers that was the true genius of Phil Armour. (Thomas Petraitis. Preservation research) In a break from the concept of the German fleishmaster who process all meat, Mr. Armour’s ideas originated in a “crude form in the packinghouses of Cincinnati (when that city was known as “Porkopolis”).” “Mr. Armour organized his workers on a scale and in ways the world had never seen before. He “de-skilled” the work by dividing the processing of meat into steps that any unskilled laborer could follow.” (Thomas Petraitis. Preservation research) This approach allowed “an animal to be killed, dismembered, cleaned and dressed at extraordinary speed. Tourists came from around the world to see Midwestern packinghouses in action.” (Thomas Petraitis. Preservation research)

“The pivotal concepts of production: division of labor, mass production, standardized units of production, continuous flow, and efficiency were pioneered in these packinghouses.” (Thomas Petraitis. Preservation research) (9)

The idea originated in the packing houses in Cincinnati where it was not new technology, but this greater division of labour that allowed greater output. The task of dismembering the pig’s carcass was divided into small tasks, performed by different men. (Horowitz, R., 2006: 50) When the American landscape designer, Frederick Law Olmsted visited Cincinnati in the 1850s, “he observed in a cutting plant “a human cutting machine” consisting of no more than a “plank table, two men to lift and turn, two to wield the cleavers.” The efficiency of these men was such that “no iron cog-wheels could work with more regular motion.” As butchers separated the pig carcass into parts “attendants, aided by trucks and dumbwaiters, dispatch each to its separate destiny,” the curing cellars below where the pork was preserved before shipment.” (Horowitz, R., 2006: 51) Olmsted timed the men dismembering the pig. One carcass every 35 seconds with several parallel stations in operation, packing 15 to 20 000 hogs during the winter. (Horowitz, R., 2006: 51)

Phil achieved his output through year-round packing made possible by refrigeration, incremental technology innovation and the consolidation of the continuous process production. His engineers improve the “disassembly” line by eliminating bottlenecks. Fragmenting the butcher’s tasks and introducing rotating wheels or conveyor tracks to bring the animal to workers performing specific cuts. This alone improved efficiency by 25%. (Horowitz, R., 2006: 52) (4)

These are concepts that must become part of the life of our proposed Woody’s factory in Cape Town. Each departments’ tasks must be broken up into its smallest components. It must be logically grouped. Self-regulatory systems theory that I have been learning from Andreas dictates that a continually improving, self-organising system must contain in its operation feedback loops for the system to respond to as well as “pressure release” or self-regulatory mechanisms. I will have to focus on conditions at home and the Woodys team must create its own production systems and not try and copy what is done in Denmark, England and in Chicago where different scale exist. The approach must be the same, but the application of the principles will differ.

Building a City Based on Civic Duty

Armour Institute of Technology,  1914
Armour Institute of Technology, 1914

Another interesting result of Armours’ work which inspired David and set a course for his life is how he translated his success into transforming his environment. David would be key in transforming Cape Town just as Phil was in transforming Chicago. The “business practices that Phil pioneered had a direct impact on the skylines, not just in Chicago, but in the USA. Besides the army of workers in the packinghouses, men like Armour needed armies of clerks and managers to run their business. These employees needed office space and many of the Chicago skyscrapers were developed to house these newly created “office workers”.

It was the disdain that Chicago industrialists like Armour felt toward needless ornamentation in the workplace that led to the development of the “First Chicago School of Architecture”, and a style of building that made structure and function its primary goal. Members of the first Chicago School included Louis Sullivan, Daniel H. Burnham, John W. Root, Dankmar Adler, and William Le Baron Jenney, the “father of the American skyscraper”. (Thomas Petraitis. Preservation research)

This is a great example of the character and the spirit of Armour and Swift. The exact same direction that was given to the enthusiasm and drive of David de Villiers-Graaff. It will be wrong to credit Phil Armour entirely for David’s drive for urban development and beautifying his city. These are, after all, global movements – an almost universal drive to beautify the living environments in cities and the realisation of our collective civic responsibilities as fellow citizens on this great earth. What is certain is that David associates himself with people with this spirit and that these concepts were part of the ether that David breathed.

He no doubt was inspired by the work of the great industrialists in Chicago. This is clear from the fact that he now returns to Chicago, not as a butcher or a businessman, but as the leader of a city with grand plans to dramatically overhaul the face of Cape Town. (The Inter Ocean, Monday, 11 April 1892. Page 9 – 12) This is the protegee returning to his mentor to show him how he has grown.

Jeppe and Eben at the Meat Excellence awards in London. 3/6/2012
Jeppe and Eben at the Meat Excellence awards in London. 3/6/2012

David’s visit was concluded by a great banquette in the state hall in Denmark. Christian IX of Denmark was in attendance as were our Danish friends, Jeppe, Andreas, and Martin. I had a suit made by a tailor in the city that Jeppe manage to arrange for me. The dinner was a grand occasion. I will never forget it!  Minette looked absolutely gorgeous.  Andreas’ mom helped her to select a blue dress that suited her perfectly.

We had an amazing evening.  I could feel that my time in Denmark was coming to an end and as I started thinking back over everything that I learned it is interesting that the major theme was nitrogen.  Your December holidays are drawing close now.  Please remember to give my Oupa and Ouma all our love when you see them! I wich I can say that I am counting the days to my return, but there is still much more to learn and new countries to visit.  Off all these adventures, be assured that I will write to you often!

With lots of love!

Dad


green-previousgreen-home-icongreen-next


(c) eben van tonder

Bacon & the art of living” in bookform
Stay in touch

Like our Facebook page and see the next post. Like, share, comment, contribute!

Bacon and the art of living

Promote your Page too


Notes

(1) David Graaff was 32 years old in 1892. He was interviewed at the World Exposition by a journalist standing at the foot of one of the main trusses of the Liberal Arts and Manufacturers building, featured in the picture below. (The Inter Ocean, Monday, 11 April 1892, p12)

1024px-Chicago_expo_Manufactures_bldg Wikipedia Worlds Columbian Exposition

The Manufacturers and Liberal Arts Building seen from the South West.

(2) This visit and meeting are purely fictional. There are no records that I am aware of that Sir David Graaff ever visited Denmark. The content of the discourse between Eben, Oscar, and David relates to David Graaff’s visit to Phillip D Armour’s company in Chicago. The visit to Armour’s company took place in the mid-1880s and was one of the first locations visited by David Graaff. This is a historical fact. (Dommisse, E, 2011: 32) Everything else is likely, but at best, informed speculation. There is no evidence at my disposal indicating that agents from Philip Armour ever visited Combrinck & Co or invited David to Chicago. It is of course completely possible that a visitor or a business associate told him about Philip Armours’ packing plant.

Option 1 is then that an agent from Philip Armour visited the Cape Colony and met David Graaff. Option 2 is that one of the many people who visited the pork packing plant of Armour reported it to David who then decided to visit it. A 3rd option is that David read about it in the newspapers. In June 1882 David Graaff took out membership to the reading room of the Cape Chamber of Commerce. The reading room gave him access to a variety of publications on financial and economic issues (Dommisse, E, 2011: 38)

(3) Morris & Company and Armour & Company merged in 1925. The grandson of Morris, also named Nelson, famously survived the final flight of the Hindenburg and the fire that destroyed the airship. (Faces of the Hindenburg. Nelson Morris)

(4) The labour economist John R Commons observed, related to the disassembly line in the pork packing houses of the late 1800’s that “skill has become specialized to fit the anatomy.” (Horowitz, R., 2006: 53)

(5) The discovery of diamonds would have been of great interest to Phillip Armour. Of even greater importance would have been the discovery of gold on the Rand and the subsequent creation of Johannesburg. I have no records of Armour sending agents to Cape Town, but from everything we know about Armour and the fact that David Graaff visited Armour in the mid-’80s to investigate refrigeration and meat processing technology the tantalizing possibility exists that my theory is at least plausible.

(6) The Eureka Diamond, the first diamond to be discovered in South Africa was found near Hopetown on the Orange river in 1867. Its weight was 21.25 carats (4.250g). (Wikipedia. Eureka Diamond)

(7) David Graaff would make his fortune in part on the realization that war with England was imminent and securing supply contracts for the British army during the second Anglo-Boer war. Both Graaff and Armour were optimists, even in the midst of dark days.

(8) The institute became the Illinois Institute of Technology. (Ansci. PD Armour)

(9) “Philip Armour and his colleague Gustavus Swift were true founders of some of the great modern business practices that remain in use today around the globe. (Henry Ford later used these same principles to develop an automobile industry “assembly” line and is wrongly credited for many of Armour’s ideas.)” (Thomas Petraitis. Preservation research)

(10) This trip to Chicago actually took place and was widely reported in newspapers in the USA. The Inter Ocean ran a detailed article on this visit on Monday, 11 April 1892. Page 9 – 12.

References

Dommisse, E. 2011. First baronet of De Grendel. Tafelberg.

The Colonies and Indian, 10 October 1891, under the heading “Colonial, Indian and American News Items,” p 11.

Horowitz, R. 2006. Putting Meat on the American Table: Taste, Technology, Transformation. The John Hopkins University Press

The Inter Ocean. 7 January 1901. Page 2

The Saint Paul Daily Globe, 10 May 1896

Armour Meat Processing Plant

http://www.ansci.wisc.edu/meat_hof/2000/pdarmour.htm

http://www.british-history.ac.uk/vch/wilts/vol4/pp220-253#h3-0002

http://www.encyclopedia.chicagohistory.org/pages/804.html (Meat packing. Louise Carroll Wade)

http://facesofthehindenburg.blogspot.com/2009/01/nelson-morris.html

http://mfo.me.uk/histories/harris.php

East St. Louis, Illinois: “Hog Capital of the Nation”

http://www.sahistory.org.za/discovery-gold-1884

http://en.wikipedia.org/wiki/Built_environment#History

http://en.wikipedia.org/wiki/Eureka_Diamond

http://en.wikipedia.org/wiki/Philip_Danforth_Armour

Pictures

Figure 1: The Inter Ocean, Monday, 11 April 1892

Figure 2: Armour refrigeration car. Wikipedia.

Figure 3: Philip D Armour. https://cioccahistory.pbworks.com/w/page/34889559/Gustavus%20Swift%20and%20Philip%20Armour%20(second)

Figure 4: Swift & Co packing line. http://www.pbs.org/now/shows/250/meat-packing.html

Figure 5: http://en.wikipedia.org/wiki/Illinois_Institute_of_Technology

Figure 6: The Manufacturers and Liberal Arts Building http://en.wikipedia.org/wiki/World’s_Columbian_Exposition

 

Chapter 08.08 Von Liebig and the Theory of Proteins of Gerard Mulder.

Bacon & the Art of Living 1

Introduction to Bacon & the Art of Living

The quest to understand how great bacon is made takes me around the world and through epic adventures. I tell the story by changing the setting from the 2000s to the late 1800s when much of the technology behind bacon curing was unraveled. I weave into the mix beautiful stories of Cape Town and use mostly my family as the other characters besides me and Oscar and Uncle Jeppe from Denmark, a good friend and someone to whom I owe much gratitude! A man who knows bacon! Most other characters have a real basis in history and I describe actual events and personal experiences set in a different historical context.

The cast I use to mould the story into is letters I wrote home during my travels.


Von Liebig and the Theory of Proteins of Gerard Mulder

Copenhagen, September 1891

Dear kids,

It is the first day of autumn. Denmark is not home, but there is a beauty to this world. Copenhagen is an amazingly beautiful city. It is much smaller than I thought it would be, but it is very organised. The buildings are old and beautiful!

Andreas became a brother. He is an amazing soccer player. I can’t keep up with him, either when I play with or against him. I try to teach them to play cricket and rugby, but it is difficult. I have given up, to the great amusement of his dad (and the relief of Andreas).

Even autumn is colder than the coldest winters we have in Cape Town. As the cold sets in I miss you guys more every day. My only consolation is that Minette is here! Every week we make time to go on a long hike.  How I miss Table Mountain!  I miss my mom.  To sit at the kitchen table as she cooks one of her legendary lunches!  I miss my dad.  I miss Oscar and our crazy late-night dreaming. The fact that I learn on the one hand and do when I work in the bacon factory makes the learning more effective.

Copenhagen Harbour. The new Frihavns must impressive building was Silo warehouse on Midtermolen, built in 1892-94 by William Dahlerup
The Copenhagen harbour. The new Frihavns’ most impressive building was the Silo warehouse on Midtermolen, built in 1892-94 by William Dahlerup.

Copenhagen is not Africa!  It seems to me that all great dreams begin on horseback, on a farm, looking for stray cattle. The vlaktes of the Wes Transvaal seem so far. Like a dream.  I remember the day after we tasted the pork that we tried to cure on Oscar’s farm with the saltpeter that we bought from the Danish spice trader in Johannesburg and discovered that the pork was off. We tried to do it according to the Danish curing system as it was explained to us.  We were so disappointed!  Trudie told us that we must have done something wrong. We were sure that we did everything that the Danish guy told us.

The next day Ou Jantjie came to the house and told us that he saw some of Oscar’s cattle on Atties farm, close to the dam, nearest to Atties house. The off-tasting pork was out of our minds and we were on Poon and Lady, riding to look for the cattle.

Oscar said that Trudie is right. That we must have done something wrong and that we must learn much more.  I think he knew from the beginning how difficult it would be to take David de Villiers Graaff on when it comes to curing bacon. Oscar’s mind is fast.

I reminded him that the spice trader said that if we really want to learn how it’s done, that we must get on the next steamship leaving the Cape for Copenhagen. We decided to get everybody who will support the dream together for a meeting at his house one evening. Then we will decide.

The wind was in our faces and we had great dreams. I am learning how important those initial dreams are.  It is like building up steam pressure before the engine starts to turn the big pistons on a steamship.  If the pressure is not build up first, it will never be enough for the first “turn”. As soon as its turning, momentum takes over and the engine takes on a life of its own.  The initial dreams are the building up of pressure.

This art of curing meat has been developing over thousands of years. On the one hand, people wanted to prevent meat from spoiling and on the other hand, cured meat developed into a culinary delicacy. The key ingredient is saltpeter (1).

Jeppe and I have the best of times during lunchtime.  Since Minette arrived, it gave our lunchtime lessons a dynamic character. He would go through the relevant scientific discoveries of the previous few years, pointing out the direct application on the science and art of curing bacon.  The science and history lessons give both Minette and me enjoyment that is hard to communicate.  The Wednesday, following our visit to the University, the Chemistry Professor decided to visit us at the bacon factory.  It set the stage for another volcanic afternoon!

Justus von Liebig

He did not want to leave us “hanging in the air”, so to speak by not completing his private lecture about the development of protein metabolism events Germany and the invention of the theory of proteins.  We were ready with notebooks, pens, and inquiring minds!  The focus now shifted from the French to the German schools. Our attention shifts to the formidable scientist in the person of Justus von Liebig.  His father was a chemical manufacturer and had a small laboratory attached to his shop.  Here Justus loved performing experiments and an exceptional life was inspired.  After studying pharmacy, he received a doctorate from the University of Erlangen in Bavaria in 1822.  The Grand Duke of Hesse-Darmstadt and his ministers noticed him and funded his further studies in chemistry under Joseph-Louis Gay-Lussac in Paris between 1822 and 1824.  Gay-Lussac himself found all plant seeds “contain a principle abounding in azote.”  It was, in Paris when a meeting with Alexander von Humboldt, according to Von Liebig, set his career on the path it took.  Up to that point, it was the French chemists who were responsible for the progression of protein metabolism, but with Von Liebig, this was about to change.

Humboldt is one of my heroes and as a child, I practically committed his books to memory.   Humboldt arranged an appointment for Von Liebig at the small University of Giessen in May 1824. Liebig wrote about this meeting  that “at a larger university, or in a larger place, my energies would have been divided and dissipated, and it would have been much more difficult, perhaps impossible, to reach the goal at which I aimed.”  Applying the techniques that he learned under Gay-Lussac he changed the face of organic chemistry and became the father of agricultural chemistry. The study of protein metabolism was now firmly in the hands of the Germans.

At the University of Giessen, Liebig created the most productive school of organic chemistry in existence at the time.  He perceived that his work could be logically extended to the chemistry of the living body. In 1840 his book, “Thierchemie in Ihrer Aufwendung auf Physio logie” appeared, and an English translation of the work entitled “Animal Chemistry, or Organic Chemistry in its Applications to Physiology and Pathology” appeared 1842.  Liebig believed that the basis of protein metabolism was chemical.  Some believe this is his most important contribution to the subject.

Von Liebig was well prepared to make such a contribution on account of his training in France and his own studies in organic chemistry. The Danish Chemistry professor brought Von Liebig’s work, Animal Chemistry (1842) along and quoted liberally from us to show the various aspects of Liebigs views on protein metabolism.  He wrote (p. 40):

“… If we hold that increase of mass in the animal body, that development of its organs, and the supply of waste,—that all this is dependent on the blood, that is, on the ingredients of the blood, then only those substances can properly be called nutritious and considered as food which are capable of conversion into blood. To determine, therefore, what substances are capable of affording nourishment, it is only necessary to ascertain the composition of the food, and to compare it with that of the ingredients of the blood. Two substances require special consideration as the chief ingredients of the blood: . . . fibrine, which is identical in all its properties with muscular fibre, when the latter is purified from all foreign matters. The second principal ingredient of the blood is contained in the serum, and gives to this liquid all the properties of the white of eggs, with which it is identical. When heated, it coagulates into a white elastic mass, and the coagulating substance is called albumen. Fibrine and albumen, the chief ingredients of blood, contain, in all, seven chemical constituents, among which nitrogen, phosphorus, and sulphur are found. . . . Chemical analysis has led to the remarkable result that fibrine and albumen contain the same organic elements united in the same proportion…. In these two ingredients of blood the particles are arranged in a different order, as shown by the difference of their external properties; but in chemical composition in the ultimate proportion of the organic elements, they are identical. . . . Both albumen and fibrine, in the process of nutrition, are capable of being converted into muscular fibre, and muscular fibre is capable of being reconverted into blood. . . . All part of the animal body which have a decided shape, which form parts of organs, contain nitrogen; all of them likewise contain carbon and the elements of water. . . The chief ingredients of the blood contain nearly 17% of nitrogen and no part of an organ contains less than 17% nitrogen.”

“The most convincing experiments and observations have proved that the animal body is absolutely incapable of producing an elementary body, such as carbon or nitrogen, out of substances which do not contain it; it obviously follows, that all kinds of food fit for the production either of blood, or of cellular tissue, membranes, skin, hair, muscular fibre, etc. must contain a certain amount of nitrogen, because that element is essential to the composition of the above-named organs; because the organs cannot create it from the other elements presented to them; and, finally, because no nitrogen is absorbed from the atmosphere in the vital process.”

“The nutritive process in the carnivora is seen in its simplest form. This class of animals lives on the blood and flesh of the graminivora; but this blood and flesh is, in all its properties, identical with their own. . . . In a chemical sense, therefore, it may be said that a carnivorous animal, in supporting the vital process, consumes itself. That which serves for its nutrition is identical with those parts of its organisation which are to be renewed. The process of nutrition in graminivorous animals appears at first sight altogether different. Their digestive organs are less simple, and their food constituents consist of vegetables, the great mass of which contains but little nitrogen. … Chemical researches have shown, that all such parts of vegetables as can afford nutriment to animals contain certain constituents which are rich in nitrogen; and the most ordinary experience proves that animals require for their support and nutrition less of these parts of plants in proportion as they abound in the nitrogenised constituents. Animals cannot be fed on matters destitute of these nitrogenised constituents. . . . These nitrogenised forms of nutriment in the vegetable kingdom may be reduced to three substances, which are easily distinguished by their external characters. Two of them are soluble in water. The third is insoluble.”

He then states that he recognises “a vegetable fibrin, vegetable albumin and vegetable casein” which is similar in characteristics to these animal products.  He continues (p. 48):  “How beautifully and admirably simple, with the aid of these discoveries, appears the process of nutrition in animals, the formation of their organs, in which vitality chiefly resides! Those vegetable principles, which in animals are used to form blood, contain the chief constituents of blood, fibrine and albumen, ready formed, as far as regards their composition. . . . From what has been said, it follows that the development of the animal organism and its growth are dependent on the reception of certain principles identical with the chief constituents of blood.”

Liebig’s view on nitrogen in nutrition is summarized by himself as follows (p. 95): . . . “According to what has been laid down in the preceding pages, the substances of which the food of man is composed may be divided into two classes; into nitrogenised and non-nitrogenised. The former are capable of conversion into blood; the latter incapable of this transformation. Out of those substances which are adapted to the formation of blood are formed all the organised tissues. The other class of substances, in the normal state of health, serve to support the process of respiration. The former may be called the plastic elements of nutrition; the latter, elements of respiration. Among the former, we reckon—vegetable fibrine, vegetable albumen, vegetable caseine, animal flesh, animal blood. Among the elements of respiration in our food are—fat, starch, gum, cane sugar, grape sugar, sugar of milk, pectine, bassorine, wine, beer, spirits.”

You will see that none of Von Liebig’s views were new.  These were concepts that originated with Magendie, 25 years earlier.  Note in particular that Von Liebig did not have an inkling of the possibility of digestion and reconstruction of proteins taken in the diet.  (Munro and Allison, 1964)

One of the many productive directions of the work of Von Liebig and his students was the application of oxidizing agents (example, manganese dioxide, and chromic acid) during acid hydrolysis of proteins and in the process identifying a series of acids and aldehydes. The concept of studying the degradation products of protein originated with Von Liebig and was to play a crucial role in the next generation  (Sahyun, M. (Editor). 1948) There is an interesting point of application of this work to the modern bacon curer.  It has emerged that there is a link between foaming and the length of the amino acids that remain after proteins have been “digested” with the aid of an acid.  This became clear when we tried to dissolve the result of our “digestion experiments” in water.  If for some reason, such “digested” proteins must be used in a bacon brine, if the foaming is excessive and interferes with the curing operation, it will be of great help to “digest” the proteins for longer before it is recovered and hydrated.

The atomic theory

At this point the Chemistry professor paused.  He asked how much we know about Dalton’s atomic theory.  Of course, I knew it well from high school in Cape Town.

I was very surprised when the professor said that Dalton’s work had an important application in the field of nutritional studies. John Dalton was by all accounts not the brightest of students.  Some said that his main characteristic was not being bright but rather, determination.   He was poor and largely self-taught.  He worked as a  schoolmaster in the north of England and developed a very important notion. The notion was that all of the elements are made up of indivisible particles, or “atoms,” and, importantly, that for each element, every atom is identical.  He came to the conclusion that in chemical combinations, two or more different atoms come together to form a firm union and this union, was, as far as the new substance is concerned, always in the same simple ratios by weight.   So, for example, the gas, carbon dioxide has exactly twice the weight of oxygen (by unit weight of carbon) compared to what is present in another gas called carbon monoxide.  So, the different elements in any compound are fixed.  When comparing two different compounds, the same two elements will always be in a simple ratio by weight.

He further concluded that when gasses combine, they always do so in the same simple relation by volume.  Let’s take the formation of ammonia as an example.  When it is formed, 3 volumes of hydrogen combine with 1 volume of nitrogen and they form exactly 2 volumes of ammonia gas.

A conclusion from these is that equal volumes of different gases contain the same numbers of molecules if one sees that many elements, such as hydrogen, oxygen, and nitrogen, have two atoms combined together to form a single molecule.

Early on there was uncertainty if carbon and oxygen each have one-half of the atomic weights that we now assign to them.  Prout in England used improved methods of analysis and arrived at the formula C2H4N2O2.  Double the atomic weights for C and O and you arrive at the modern formula of CH4N2O.

In the early 1800s, Friedrich Wöhler achieved what may believe to the start of organic chemistry when he obtained urea by heating silver cyanate with ammonium chloride. He wrote to his professor: “I can make urea without the use of kidneys.”  By doing this, he demonstrated that an organic compound produced in living systems could also be produced in the laboratory without the aid of any “vital force.”

Wöhler and Von Liebig’s Free Radical

Wöhler worked with Liebig and developed the idea of a common radical that would combine with other reagents, but still retain its own nature and be recoverable by further reactions.  In chemistry, a free radical  is a species that contain one occupied orbital.  A characteristic of a free radical is that they are neutral and they tend to be highly reactive.  The first such ree radical was “benzoyl”.

Starting with benzaldehyde (C6H5CHO), it can be oxidize to benzoic acid (C6H5CO2H).  Note the addition of an oxygen atom.  Alternatively, a chlorinated derivative can be formed.  The original benzaldehyde can be created by reducing or removing oxygen.”  (Carpenter, 2003)  It is easy to see the similarity in what we are doing with nitrate, nitrate, and ammonia and this, in turn, is build upon the logic of the atomic theory.

Gerard Mulder and the nature of animal substance

The Dutch chemist Gerard Mulder (1802–1880) published a paper in a Dutch journal in 1838 which was reprinted in 1839 in the Journal für praktische Chemie. Mulder examined a series of nitrogen-rich organic compounds, including fibrin, egg albumin, gluten, etc., and had concluded that they all contained a basic nitrogenous component (~16%)  to which he gave the name of “protein” (Munro and Allison, 1964) from a Greek term implying that it was the primary material of the animal kingdom.

The term protein was coined by Jöns Jacob Berzelius, and suggested it to Mulder who was the first one to use it in a published article. (Bulletin des Sciences Physiques et Naturelles en Néerlande (1838); Hartley, Harold (1951) “Ueber die Zusammensetzung einiger thierischen Substanzen” 1839)). Berzelius suggested the word to Mulder in a letter from Stockholm on 10 July 1838. (Vickery, H, B, 1950) Mulder suggested using the symbol “Pr” for the radical, that egg albumin could be expressed as “Pr10 · SP” and serum albumin as “Pr10 · S2P,” and that the radical itself had the molecular formula “C40H62N10O12.  (Carpenter, 2003)

This common nucleus was linked with phosphorus and sulfur to give the various compounds referred to above. “Die organische Substanz, welche in allen Bestandtheilen des thier ischen Körpers, so wie auch, wie wir bald sehen, im Pflanzenreiche Vorkommt, könnte Protein von Tporetos primarius, genannt werden. Der Faserstoff und Eiweissstoff der Eierhaben also die Formel Pr + SP, der Eiweissstoff des Serums Pr + SP.” (The organic substance which is found in all the constituents of the animal body, as well as, as we shall soon see, in the vegetable kingdom, might be called protein of Tporetos primarius. The fiber and protein of the eggs thus have the formula Pr + SP, the protein of the serum Pr + SP)  (Munro and Allison, 1964)

Liebig initially liked the concept.  He wrote, “… When animal albumen, fibrine, and caseine are dissolved in a moderately strong solution of caustic potash, and the solution is exposed for some time to a high temperature, these substances are decomposed. The addition of acetic acid to the solution causes, in all three, the separation of a gelatinous translucent precipitate, which has exactly the same characters and composition, from whichever of the three substances above mentioned it has been obtained. Mulder, to whom we owe the discovery of this compound, found, by exact and careful analysis, that it contains the same organic elements, and exactly the same proportion, as the animal matters from which it is prepared; insomuch, that if we deduct from the analysis of albumen, fibrine, and caseine, the ashes they yield, when incinerated, as well as the sulphur and phosphorus they contain, and then calculate the remainder for 100 parts, we obtain the same result as in the analysis of the precipitate above described, prepared by potash, which is free from inorganic matter.”  (Munro and Allison, 1964)

If we look at it in this way, the main ingredients of blood and caseine in milk can be regarded as a mixture of phosphates and other salts, and of sulphur and phosphorus, with a compound of carbon, nitrogen, and oxygen, in which the relative proportion of these elements is fixed.  This compound can then be regarded as the commencement and starting-point of all other animal tissues because these are all produced from the blood. Mulder had an insight that since the insoluble nitrogenised part of wheat flour (vegetable fibrine) when treated with potash, the exact same product is yielded namely protein.  He found that the true starting-point for all the tissues is albumen and that all nitrogenised articles of food, whether derived from the animal or from the vegetable kingdom, are converted into albumen before they can take part in the process of nutrition.  Liebig, like Mulder, ascribes the formula C4s H36N6O14 to protein, and albumen becomes C18H38N6014 + P + S, fibrine is C48E36. N6014 + P + 2 S, and so on.

– Liebig’s Opposition

Liebig eventually rejected Mulder’s concept of a nucleus protein based on work he continued to do on protein chemistry. He sets forth his arguments against Mulder at some length in his book “Researches on the Chemistry of Food,” published in an English edition in 1847. Here Liebig indicates that several chemists were unable to repeat some of Mulder’s basic experiments and that his formulas for fibrin, albumin, etc., as compounds of protein with sulfur and phosphorus in specific relations, do not agree with the results of more recent analyses of these substances. In this, he conveniently forgets his own earlier enthusiasm for Mulder’s view, and says (p. 18): “… A theoretical view in natural science is never absolutely true, it is only true for the period during which it prevails; it is the nearest and most exact expression of the knowledge and the observations of that period. It ceases to be true for a later period, inasmuch as a number of newly acquired facts can no longer be included in it. . . . But the case is very different with the so-called proteine theory, which cannot be regarded as one of the theoretical views just mentioned, since, being supported by observations both erroneous in themselves and misinterpreted as to their significance, it had no foundation in itself, and was never regarded, by those intimately acquainted with its chemical groundwork, as an expression of the knowledge of a given period.” (Munro and Allison, 1964). “Mulder was enraged by the tone of the criticism from Liebig, who was now denying what he himself had previously asserted.” (Carpenter, 2003)

Despite his criticism, Von Liebig suggests the direction which eventually led researchers to ultimately resolved the structure of the protein molecule.

He says (p. 27) : … The study of the products, which caseine yields when acted on by concentrated hydrochloric acid, of which, as Bopp had found, Tyrosine and Leucine constitute the chief part, and the accurate determination of the products which the blood constituents, caseine, and gelatine, yield when oxidised, among which the most remarkable are oil of bitter almonds, butyric acid, aldehyde, butyric aldehyde, valerianic acid, valeronitrile, and valeracetonitrile, have opened up a new and fertile field of research into numberless relations of the food to the digestive process, and into the action of remedies in morbid conditions.” (Munro and Allison, 1964)

It is an interesting thought that in the word “protein” we refer to the important class of body constituents, and we, at the same time, commemorate an erroneous oversimplification of protein structure.  We must also remember that we use the word in a meaning different from that originally intended. The German word for protein is “Eiweiss.” The reason may very well be because of Von Liebig’s eventual rejection of Mulder’s hypothesis.” (Munro and Allison, 1964). Dennis M Bier states that despite these nuances, Berzelius and Mulder were, in the most basic analysis, right: “Protein is the essential general principle of the constituents of the animal body. Thus, one might briefly summarize the physiological roles of protein in metabolism as “responsible for just about everything.” (Bier, D. M., 1999). “The notion of the protein radical disappeared from the literature and the term “protein” gradually began to be applied to all the materials previously described as “animal substance.”   (Carpenter, 2003)

Is Protein the only true nutrient?

Our good professor was on a roll.  Nitrogen, as the key nutrient was firmly established, but is this the only one?  While he is on the subject, he gave us a history lesson on the further development of thoughts around this matter.  As a food producer, this remains one of the overall biggest subjects.  Nutrition!  It is the original and main reason why we eat!

Von Liebig wrote the following in his book, Animal Chemistry or Organic Chemistry in its Application to Physiology and Pathology, that “because his analyses of muscles failed to show the presence of any fat or carbohydrate, the energy needed for their contraction must come from an explosive breakdown of the protein molecules themselves, resulting in the production and excretion of urea. Protein was, therefore, the only true nutrient, providing both the machinery of the body and the fuel for its work.

What is the reason then that we would need the other parts of the food that we consume?   Why is carbonic acid produced in much higher volumes during exercise? The explanation of Von Liebig was that increased respiration was needed to keep the heart and other tissues from overheating. This led to more oxygen finding a way into the tissues, which unfortunately potentially cause oxidative damage and a loss of protein tissue. Fats and carbohydrates then acted as mopping agents of this excess by being themselves preferentially oxidized.

Von Liebig’s book quickly gained a reputation as an important intellectual synthesis.  His ideas gained wide acceptance, the influence which was felt for many years. The Professor of Medicine at Edinburgh University was, for example, asked to investigate an unexpected and very serious outbreak of scurvy in a Scottish prison, he immediately concluded that it must be the result of an inadequate intake of protein. He calculated the average daily protein intake of a prisoner to be an ample 135g. Only 15g of this was from animal sources and 102g from gluten.

His conclusion was to raise the average daily intake of milk to increase the intake of animal protein because, he argued, the power of the body to convert gluten to animal protein was limited.  There were, however, a problem with this logic, as was spotted and pointed out by another Scottish physician who replied that the value of lemon juice in the prevention of scurvy was well established and could not possibly be attributed to its protein content, given that a curative dose contained only a negligible amount of nitrogen.

The theory that muscular work is required to break protein down was problematic.  The traditional diet of laborers was of lower protein content that of the less active rich. Now, remember the book, Foods, we are reading every night with Andreas and his family.  Edward Smith, the author, and a British physician, and physiologist is another scietist of the time who was interested in the welfare of prisoners.  He was worried about the stressfulness of them having to work on a treadmill.  He measured their urea excretion in the 24h during and after their 8 hours of work, and again on their subsequent rest days, and found no difference. His findings were in complete opposition to the position of Von Liebig who would have said that on the basis that the energy expended all came from the breakdown of protein that resulted in the production of urea.  (Carpenter, 2003)

Liebig and Urine

Von Liebig drew attention to urea as an end-product of protein breakdown in the body.  He did not get it right completely.  In his work, “Animal Chemistry” (1842), (p. 62) he wrote, “… We know that the urine of dogs, fed for three weeks exclusively on pure sugar, contains as much of the most highly nitrogenised constituent, urea, as in the normal condition. Differences in the quantity of urea secreted in these and similar experiments are explained by the condition of the animal in regard to the amount of the natural motions permitted. Every motion increases the amount of organised tissue that undergoes metamorphosis. Thus, after a walk, the secretion of urine in man is invariably increased.”

Later (p. 245), he wrote, “The amount of tissue metamorphosed in a given time may be measured by the quantity of nitrogen in the urine.” All this shows Von Liebig’s central thought that protein in muscle was the fuel for muscular exercise.  He believed that the nitrogenous components of the diet must first be converted to living tissue before being broken down to yield urea. “There can be no greater contradiction, with regard to the nutritive process, than to suppose that the nitrogen of the food can pass into the urine as urea, without having previously become part of an organized tissue.” (p. 144).” (Munro and Allison, 1964)

Liebig’s Contribution to Protein Metabolism and the work of Carl Voit

Why this attention to Von Liebig?  It appears from what we have seen that he did not contribute much of permanent value to our understanding of protein metabolism. Nothing could be further from the truth.  Von Liebig adhered to a vigorous application of organic analysis to compounds of biological interest, he undoubtedly laid the foundations of intermediary metabolism and much of the important work that followed Von Liebig was predicated on these findings. Besides these, Von Liebig identified many of the compounds of biological interest which subsequent researchers made their focus areas with great success.

Von Liebig’s ultimate genius was that he took on seemingly insurmountable problems and even though he did not come up with the ultimate solutions, he managed to break the issues down to such an extent that one can say he pointed the way to their ultimate solution. Look for example at his comments on intermediary metabolism.  He wrote (“Researches on the Chemistry of Food,” (1847) p. 10): “The intermediary members of the almost infinite series of compounds which must connect Urea and Uric acid with the constituents of the food, are, with the exception of a few products derived from the bile, almost entirely unknown to us; and yet each individual member of this series, considered by itself, inasmuch as it subserves certain vital purposes, must be of the utmost importance in regard to the explanation of the vital processes, or of the action of remedies.”

Another good example is the fact that he saw certain chemical reactions as only occurring in biological systems and suspected that these were dependent on the presence of proteins. Have a look at the following statement (p. 7) from his book on food chemistry where he came agonizingly close to our modern understanding of the concept of enzymes:  “… There is, probably, no fact more firmly established as to its chemical signification, than this, that the chief constituents of the animal body, albumen, fibrine, the gelatinous tissues, and caseous matter, when their elements are in a state of motion, that is, of separation, exert on all substances which serve as food for men and animals, a defined action, the visible sign of which is a chemical alteration of the substance brought in contact with them. That the elements of sugar, of sugar of milk, or starch, etc., in contact with the sulphurised and nitrogenised constituents of the body, or with analogous compounds which occur in plants, when these are in a state of decomposition, are subjected to a new arrangement and that new products are formed from them, most of which cannot be produced by chemical affinities, this is a fact, independent of all theory.”

Von Liebig’s greatest contribution to the development of protein metabolism is in the school of biochemical studies, founded by him.  This was done first in Giessen, and later in Munich, where he became professor of chemistry in 1852. From here emerged a number of very important proponents of metabolism, chief among them being Carl Voit, whose researches in protein metabolism placed the concept of nitrogen balance on a firm footing.

Voit was intensely interested in “animal chemistry.” He wrote that Dumas was wrong in his assertions since it was well known that pigs would fatten when fed on potatoes that were rich in starch, but had only a small amount of fat. Accordingly, it must be concluded that animals are able to convert carbohydrates to fat even though the conversion required “reduction” rather than oxidation.

French researchers who were regarded as the authorities on this subject challenged this view, and Boussingault put the matter to the test.   He performed another groundbreaking experiment with pigs.  He took a young pig and killed it and analysed its carcass.  He took a littermate of this pig, of the same weight, and fed it measured amounts of feed for another 3 months. The carcass analysis of the second pig indicated that this pig had an extra 13.6kg fat but the feed it consumed only had 6.8kg.

This very clearly showed the French school to be wrong on this point.  Both Boussingault and Dumas retired from working with animals.  Von Liebig became the new authority, even though he had never actually carried out a feeding trial. He continued to advocate his ideas on physiology and nutrition. Most of these were gradually shown to have been completely wrong, but at least they stimulated others to do research, putting them to the test.”  (Munro and Allison, 1964)

An Inspirational Message

Kids, take note that neither Mulder nor Von Liebig illuminated protein or its metabolism fully, but we gain a great appreciation for their work in the early to mid-1800s. I wonder how many of today’s researchers would do as much as these men did with the scant knowledge they had and it is a lesson to us all. Rigour in our work will yield results, no matter how tentative at first.  It reminds me of the old verse from Sunday school in the Groote Kerk in Cape Town that there is profit in all labour.

I think that there can be no doubt that nitrogen is absolutely key to the art of bacon curing and the most important macro molecule we are working with is protein.  I came to realise that bacon is nothing less than the art of manipulating it.  A question of whether the nitrogen that we add to the meat in the form of nitrate or nitrite is good for us or not is in the first instance the wrong question since when you are talking about protein you are talking about nitrogen and vice versa.

Thirdly to nitrogen and protein is the concept of nutrition.  Yes, we eat because we are social animals and there is nothing more sociable than a great meal.  We eat because we listen to bach and drink pilsner.  We enjoy it!  But most importantly, we eat because it keeps us healthy and it contains the fuel we need every day to live and breathe and have our being.  Nutrition is of the absolute greatest importance when we produce food.

The development of the art of meat curing and understanding its chemistry and processes is intimately connected to our most basic understanding of life itself.

I am downstairs in the living room.  Minette passed ut on the couch – she is exhausted.  I’m finishing up and then we will all go to bed.

I love you more than life itself!

Your Dad.


Practical Applications for the Modern Bacon Curer

In bacon production, one determines the total meat content as follows.  Assume you start with 100kg of meat and inject 20L brine.

Meat weight:  100kg
Brine added:  + 20L (100kg becomes 120kg; added through injection/ tumbling)
Loose 10% in cooking/ smoking: – 12kg (120kg becomes 108kg)
Freezing loss of -1%: – 1.08kg yields total bacon ready for slicing: 106.92kg.

Divide the meat weight you started with by the end weight after processing (100/106.92) = 93.52% total meat content.

According to SA regulations, bacon must be at least 95% total meat content.

One doesn’t lose proteins during steam cooking. Only during water cooking. In the older literature on the subject, when they talk about curing, they mean salt only curing as in dry-curing and in this process there is a loss of proteins (if done in the traditional way of turning the meat every day and allowing the extracted meat juices to run off). If one, however, cooks the bacon, as in Australia, during the cooking step, fat will melt and drip off. Exactly how much fat is lost is determined through analysis. I am sure the % is small, but surprising results are obtained through analysis.

It will impact the calculation since total meat is defined as lean meat plus fat. Meat weight after the actually visible fat has been trimmed off x 0.9 is a good approximation to determine actual lean meat content. All meat contains fat that can not be seen. Without it, meat will be completely un-edible. Two further ratios we want to become familiar with are the ratio of percentage protein nitrogen to lean meat % being N x 30 = lean meat % and the nitrogen to protein factor which is 6.25 meaning N x 6.25 = total protein.

These ratios are important for meat processors.   Let’s look at our calculation again which we used above.  Note that they only achieve total meat content of 93% in their bacon and they need to have it at 95% or above.  They can now do the following:

Meat weight:  100kg
Brine added:  + 20L (100kg becomes 120kg; added through injection)

In the tumbling stage, add 1kg of pork protein (80% actual protein – the other 20% will be a filler).  Of course, various levels of functionality are commercially available and one must inquire of what the actual protein percentage is to complete the calculation.  This means that the nitrogen added in our example of a product with an 80% functionality is 80% x 1kg = 0.800kg protein / 6.25 – the nitrogen-to-protein ratio to give us the weight of the protein nitrogen x 30 – the protein-to-lean-meat factor = 3.84kg lean meat. In other words, by adding 800g functional protein, they have effectively added 3.84kg to the starting meat weight as lean meat.  There is no fat since the added functional pork proteins do not contain fat.

They can then use their starting ratio as 100kg + 3.84kg = 103.84 which, after injection and tumbling will yield them 106.92.  Dividing the meat weight you started with by the end weight after processing is now 103.84/ 106.9 = 97.1% total meat content which, if this is in SA, places you well within the legal requirements for bacon.

For those interested in having this in a live spreadsheet I include this sheet, courtesy of Dr. Francois Mellett. ED2-8 Cost op Protein, LME, and TME.  Here he compares the cost of different protein sources and uses the conversion factor of 4.8 to move between % protein and TME/ LME.  He derives his conversion factor of 4.8 to move between % protein and LME eqw as follows:  The two equations he works with are:

Protein Nitrogen x 6.25 = Proteins

Percentage Lean Meat = (Percentage Protein Nitrogen × 30 )

Let’s take TVP Soy with a protein content of 50%.  Therefore:

Protein Nitrogen x 6.25 = 50%; Protein Nitrogen % = 50%/6.25 = 8

Percentage Lean Meat = (8 × 30 ) = 240/100 = 2.4.

The same can be achieved by the factor 30/6.25 = 4.8; 4.8 x 50% = 250/100 = 2.4

A very small added benefit for the producer will be that the protein added representing 3.84kg lean meat will be cheaper than the actual meat.  There is, therefore, no financial downside for the producer.  The producer is limited in how much of the protein can be added since it will start to affect the appearance and colour of the bacon.  My suspicion is that in countries like Australia, more can be added due to the fact that the bacon is sold fully cooked which yields a paler bacon as opposed to South African producers where the bacon is sold par-cooked and have a much brighter reddish-pinkish appearance.  Adding protein, I suspect,  will, therefore, have less of an impact in Australia compared to South Africa.  I will not be surprised if some Australian producers add a lot more non-meat and meat protein alike and therefore inject more brine.

The reality is that actual food legislation in Australia and New Zealand allows for a slightly different approach which we will look at in detail in the next article. For now, it is enough that we start interacting with some of the values we encounter as we learn how they were discovered.

We continue our fascinating journey by looking at the contribution of a formidable man, Justus von Liebig during whose time, protein was identified and named.  We also encounter our first ratio when Mulder estimated that meat proteins contain 16% nitrogen (N).  By multiplying the nitrogen content with 100/16, the protein content is
estimated. Therefore, nitrogen x 6.25 is the protein content.


Further Reading

Counting Nitrogen Atoms – The History of Determining Total Meat Content


green-previousgreen-home-icongreen-next


(c) eben van tonder

Bacon & the art of living” in bookform
Stay in touch

Like our Facebook page and see the next post. Like, share, comment, contribute!

Bacon and the art of living

Promote your Page too


Notes

(1) Nitrate is the essential curing agent and in Salpeter is coupled with potassium or sodium or calcium.

References

Bier, D. M.; The Energy Costs of Protein Metabolism: Lean and Mean on Uncle Sam’s Team, Protein and Amino Acids, 1999, Pp. 109-119. Washington, D.C., National Academy Press

Bulletin des Sciences Physiques et Naturelles en Néerlande (1838). pg 104. SUR LA COMPOSITION DE QUELQUES SUBSTANCES ANIMALES.

Carpenter, K. J.; A Short History of Nutritional Science: Part 1 (1785–1885), The Journal of Nutrition, Volume 133, Issue 3, 1 March 2003, Pages 638–645, https://doi.org/10.1093/jn/133.3.638

Hartley, Harold (1951). “Origin of the Word ‘Protein. Nature 168(4267): 244–244. Bibcode 1951Natur.168..244Hdoi10.1038/168244a0.

Munro, H. N., and Allison, J. B..  1964.  Mammalian Protein Metabolism.   Academic Press.

Vickery, H, B; The origin of the word protein” Yale journal of biology and medicine vol. 22,5 (1950): 387-93.

“Ueber die Zusammensetzung einiger thierischen Substanzen”. Journal für Praktische Chemie (in German).16: 129–152. 1839.doi10.1002/prac.18390160137

Featured Image: Venison Sausage Catalan Style, Robert Goodrick.

Chapter 08.07 Lauren Learns the Nitrogen Cycle

Bacon & the Art of Living 1

Introduction to Bacon & the Art of Living

The quest to understand how great bacon is made takes me around the world and through epic adventures. I tell the story by changing the setting from the 2000s to the late 1800s when much of the technology behind bacon curing was unraveled. I weave into the mix beautiful stories of Cape Town and use mostly my family as the other characters besides me and Oscar and Uncle Jeppe from Denmark, a good friend and someone to whom I owe much gratitude! A man who knows bacon! Most other characters have a real basis in history and I describe actual events and personal experiences set in a different historical context.

The cast I use to mould the story into is letters I wrote home during my travels.


Lauren Learns the Nitrogen Cycle

Copenhagen, August 1891

Dear Lauren,

A father’s relationship with his daughter is very special. It’s magical! This is your turn to get a letter, my precious La.  How I miss you guys!  This week I learned an important lesson, that life is about much more than science, technology, and business.

Jacobus Arnoldus Combrinck, kindsman of the Graaf brothers and founder of the Cape Town butchery that became the Imperial Cold Storage & Supply Company Ltd.

Tribute to Jacobus Combrinck

I got a telegraph on Thursday, 6 August 1891 from David de Villiers Graaff.  He told me the devastating news about the death of Uncle Cornelius Combrinck. (1)  I am immensely saddened.  He was a part of our lives for so long.  I practically grew up in his home.  He and your grandfather were friends since before I was born. I can almost not imagine going forward without him.  The knowledge of his passing left a gap in my heart.  When I read David’s message, I took a long walk and cried much.

In my mind, I see him with the two of you on his lap when you were still very small. When we visited him in his Woodstock home (2) he would put you on his knee and you would “ride horsie”.  I don’t know if you will remember this.  You were so small!

You loved going there and he loved having us over.  The large apricot trees in his back garden!  You and Tristan enjoyed climbing them.  He had the biggest garden and tended it with care. I will never forget the last time I saw him just before I left for Denmark.  He spoke to me privately and urgently.  He told me that he thinks I am finally making a good career choice.  He did not like the fact that I rode transport to Johannesburg because he believed that the railroads would soon have put me out of business.  The meat industry, he to him, is one of the iconic, almost eternal industries.  People would always need food. He told me that the chance to become proficient in one aspect of it is something I can build a future on.  Now he is gone.  Life is short.

Uncle Cornelius never had his own children, but he invested liberally in the lives of others, particularly children.  He spared no effort to mentor me, even in times when I made choices that he did not agree with.  He took the Graaff brothers into his house and cared for them as if his own.

I understand that he was buried from the Groote Kerk, in Cape Town and laid to rest in the Maitland Cemetary.  His life is an example to all of us, little La!  He was your age when he started to work in the butchery of Johannes Mechau.  His dad had passed away and his mother was desperate for extra income.  The fact that as a 10-year-old boy he had to earn his living could have been a sign that he was destined for a life of mediocrity and poverty.  The opposite was true!  By his own resolve and willpower.  Mechau found that he learned the trade quickly.

He was ambitious and left Mechau’s employment to join the leading pork butcher in town, the Swiss Ithmar Schietlin. When Schietlin returned to Switzerland, Combrinck went into business for himself.

He was very successful.  He speculated in the diamond industry in Kimberly.  He owned houses in Sea Point, Three Anchor Bay, and Wynberg.  He had sheep farms that supplied his own and other butcheries throughout the Colony.

Uncle Jakobus knew the value of a young apprentice from his own experience. He thought it best to select such an apprentice from his own people and in 1870 he visited the farm Wolfhuiskloof in the lovely Franschhoek mountains.  Like his own family situation, years earlier, the Graaff family fell on hard times and found it difficult to feed their children.  One of the children of Petrus and Anna Graaff impressed Jacobus.  The child was lively and intelligent and he suggested that David return to Cape Town with him where he would be taught the butchery trade.  The suggestion pleased everybody.  This is how it came about that David joined the butchery, Combrinck & Co. (Simons, 2000)

I am sorry that I missed his funeral but I managed to send a telex to the Graaff brothers.  It is a comfort to know that you, Tristan, and my parents attended. I wonder how Cecil Rhodes took the news of his passing? (3) (Simons, 2000)

The Best I Can Be

Lauren, I am here to learn the butcher’s trade and the art of curing bacon.  One of the best responses possible to honour the memory of Uncle Jacobus is to become the best I can be at these.

As a child on Stillehoogte, I learned that saltpeter is the magical salt that cures meat.  A friend of Uncle Jeppe, Dr. Eduard Polenski, discovered that nitrites form in bacon brine and suspects that it is the actual compound that changes pork into bacon and not saltpeter (potassium or sodium nitrate).  At the factory, I would walk behind Unkle Jeppe on the way to the curing room and he would ask me, “Eben, what changes pork into bacon?”  My answer always had to be, “Nitrite!” (4)  He would follow this up by asking, “Where does nitrite come from?” upon which I reply, “From the saltpeter, when bacteria change the nitrate into nitrite when it removes the one oxygen atom from the saltpeter molecule.”

To fully comprehend the different nitrogen compounds that play a rile in meat curing, there is another compound you must know besides nitrite (NO₂⁻) and nitrate (NO3-), namely ammonia.  In my last letter to you and Tristan, I already introduced you very briefly to it when I told you about ammonium chloride which was another great salt from antiquity that cured meat.

The three cousins of the chemical gas, nitrogen are ammonia, nitrite, and nitrates.  These three cousins are key to all life and exist almost everywhere.  It occurs naturally in sea salt, in the ground, in salt beds.  They are pervasive.  Without them, we won’t be able to shoot a gun, fertilize our fields or cure bacon.  Some people refer to it as the nitrogen cycle – the fact that nitrogen exists in the atmosphere as a stable gas, that the tight bonds are broken through the action of lightning which then frees the two nitrogen atoms so that one can react with oxygen to form nitric oxide (NO).  As it cools down, it reacts further with the oxygen molecules around it to form nitrogen dioxide (NO2) which is one nitrogen atom and two oxygen atoms.  Nitrogen Dioxide (NO2) reacts with more oxygen and raindrops.  Water is H2O.  The two oxygen atoms of nitrogen dioxide combine with the one from water to form 3 oxygen atoms bound together.  There is still only one nitrogen atom giving us NO3 or nitrate.  There is now still one Hydrogen atom left and it combines with the nitrate to form nitric acid (HNO3).  Nitric acid falls to earth and enters the soil and serves as nutrients for plants.

There is now an interaction where oxygen is added to nitrogen-containing compounds (oxidation) and removed (reduction).  Bacteria change decomposing animal and plant matter from ammonia into nitrite and nitrates and eventually back into nitrogen gas which is released into the atmosphere.  Certain bacteria change atmospheric nitrogen directly into a form that can be digested by plants.  Uncle Jeppe organized a visit for Minette and me to the University of Copenhagen where a professor in biology and chemistry took an entire morning to describe to me the most recent discoveries in this field.

I wrote to Tristan about nitrate.  I told him about saltpeter and nitrite, when I reported on the work of Dr. Eduard Polenski and his insight and experiment showing that in bacon cures, nitrate is converted to nitrite.  It has recently been shown that there is a conversion of each of these compounds into the other through the action of small organisms, called bacteria in soil and water.  It was these discoveries that gave Dr. Polenski the insight that it may be bacteria in brine, changing the nitrate ( NO3-) to nitrite (NO₂⁻).  Our visit to the University was breathtaking.  I was glad that Minette accompanied me.  I needed someone there to simply help me take notes and to remember every bit of insight shared by the Professors.  It is thrilling to share my journey of discovery with all of you!

Discovery of the Microscopic

One of the pillars of understanding nitrogen is its chemical make up.  Another is to understand bacteria and their role in these processes.  Some of the reactions in meat are driven by chemistry and some by bacteria.  Like many of our greatest discoveries, the ancients had a very good idea that the microscopic world must exist.

Bacteria and micro-organisms were discovered between 1665 and roughly 1678. Two of the men responsible for their discovery were Robert Hooke and Antoni van Leeuwenhoek. (Gest, H. 2004)  As one can imagine, the microscopic was discovered when the instruments were invented to see very small organisms.  It came about after the discovery of the microscope. The first illustrated book on microscopy was Micrographia,  published by Robert Hooke in 1665. (Gest, H. 2004)

On 23 April 1663, Hooke reported on two microscopic observations to the Royal Society, one of leaches in vinegar and another of mould on sheepskin. So opened up to humankind the magical world of the minute! The microscopic!

It was the astonishing Antoni van Leeuwenhoek from Holland who introduced us to many micro realities of our world. Here is an interesting list of some of the discoveries of this remarkable man:

In 1674, in a single vial of pond scum that he took from the Berkelse Mere, a small lake near Delft, he discovered and described the beautiful alga Spirogyra, and various ciliated and flagellated protozoa.  He found in 1674 that yeast consists of individual plant-like organisms. In 1675 he discovered and accurately described and differentiated red blood cells in humans, swine, fish, and birds. In 1677 he was the first to observe sperm cells in humans, dogs, swine, mollusks, amphibians, fish and birds. In 1679 and 1684 he described the needle-shaped microscopic crystals of sodium urate that form in the tissues of gout patients in stone-like deposits called “tophi”. In 1684, he correctly guessed that much of the pain of gout is caused by these sharp crystals poking into adjacent tissues. More than a century would pass before any further advance in the understanding of gout. He found and described in 1680 foraminifera (single-celled protists with shells) in the white cliffs of England’s Gravesend and nematodes in pond water.

Between 1680 and 1701 he carried out many microdissections, mainly on insects, making an enormous number of discoveries: He wrote extensive accounts of the mouthparts and stings of bees. He was the first to realize that “fleas have fleas”. His keen perception enabled him to correctly conclude that each of the hundreds of facets of a fly’s compound eye is, in fact, a separate eye with its own lens. This outlandish (but true) idea was met with derision by visiting scholars. The big breakthrough came in 1683. In his most celebrated attainment, he discovered the bacteria in dental tartar, including a motile bacillus, selenomonads, and amicrococcus.

16 October 1674, Antoni wrote a letter describing his study of the tongue of an ox and his observations of the taste buds. On 24 April 1676 Antoni studied pepper water that has been sitting for three weeks under his microscope. He observed small organisms that he called “little eels” (animalcules). What he was looking at were bacteria. He has discovered a world that we knew very little about!

Antoni was responsible, not just for discovering bacteria, but for discovering important classes of bacteria. He was among others responsible for identifying anaerobic bacteria. (5) (6) In a letter dated 14 June 1680 to the Royal Society, he described his discovery. This would become very important in considering the action of bacteria in meat systems since the environment is often devoid of oxygen.

The important point about bacteria that I want you to focus on is that it plays and pivotal role in the nitrogen cycle as described by Louis Pasteur. It continues the very same interaction with family members of nitrogen in the curing of meat. (Dikeman, M, Devine, C: 436) (6) (7)

Scientists in the late 1800s started to hone in on the particular bacteria responsible for converting nitrate to nitrite. This is becoming very important to us because generally, nitrate exists because of the action of bacteria, but particularly, as Dr. Eduard Polenski speculated in 1891, it is the action of bacteria that turns nitrate from saltpeter into nitrite in curing brines and meat that is being cured. The question we have been asking is if this was a fair assumption for him to make and the answer is an overwhelming “yes!”

From 1868 it has been known that bacteria in soil are responsible for the exact same reduction.  It was known for 23 years before Dr. Polenski’s 1891 experiments on curing brine and the meat being cured. The reduction of nitrate in soil to nitrite or ammonia was brought about by various forms of microorganisms. The person who demonstrated this in 1868 was the German scientist C F Schonbein. Our French friends, Gayon and Dupetit, confirmed this. (Waksman, SA, 1927 : 181)

Adding carbohydrates, glycerol, and organic acids, in addition to peptone (a soluble protein formed in the early stage of protein breakdown during digestion) to meat through its brine stimulate the reduction of nitrate to nitrite.  It was also discovered that an abundance of oxygen hindered it. (Waksman, SA, 1927 : 181)  This will prove to be of the greatest importance to meat curing and since we can achieve a brighter colour by adding organic acids, glycerol, carbohydrates and reducing sugars to the brine mix.

One researcher, Maassen, tested 109 different bacteria and found that 85 were capable of reducing nitrate to nitrite, especially Bact. Pyocyaneum. Similar results were found by others who studied this.  Not only did they find that many of the bacteria responsible for the reduction were anaerobic (functioning in the absence of oxygen) but that many strict aerobic bacteria were found to act anaerobically in the presence of nitrates. (Waksman, SA, 1927 : 181)  This was true of soil and certainly, it should be true in meat and brine systems also!

Ammonium Chloride (Sal Ammoniac)

We have seen that nitrite is formed by removing an oxygen atom from nitrogen.  There is another very important way that nitrate is formed namely when ammonia breaks down.   The Russian microbiologist Sergei Winogradsky discovered this.  Microorganisms, through a process called biological oxidation, change ammonia to nitrite and nitrite to nitrate.  Have a look at how oxygen is added at every step. Ammonia is NH3  and there is no oxygen.  Nitrite is formed NOwhich is the nitrogen and two oxygen atoms.  From nitrite, through bacterial action, nitrate is formed NO3.  So, from a form with no oxygen, the most oxygenated state is reached namely nitrate with its three oxygen atoms.

We have to understand a bit more about ammonia to see how this works.  This will be very important when we look at the decomposition of animal tissue and in animal urine and excrement since it contains copious amounts of ammonia.  The building blocks of ammonia is seen in its chemical formulation. Ammonia is a compound of nitrogen and hydrogen with the formula NH3.

In nature, ammonia exists as NH3 or its ammonium ion (NH4+). The ammonium ion, in nature, also combines with a metal such as chlorine to form a salt of ammonium.  Ammonium is therefore not only important in the nitrogen cycle, but also in meat curing in the form of a salt where a metal such as chloride combined with the ammonium ion to form ammonium chloride (NH4Cl).  It is the NHwhich makes it mildly acidic and the new molecule of sal ammoniac or ammonium chloride is highly reactive with water.  Ammonium chloride occurs naturally as a crystal and it is formed through the action of bacteria on decomposing organic material. As a salt, it is one of the iconic salts of antiquity.

Natural Sal Ammoniac

Ammonium chloride occurs naturally in the smoking mountains of Turfan and in Samarkand where volcanic fumes are released through vents. The crystals form directly from the gaseous state, skipping the liquid state.  The crystal that is formed tends to be short-lived, as they dissolve easily in water.  This is the basis for my guess that in Turfan, where ammonium chloride occurs in the mountains and nitrate in the depression but they have a similar effect on meat.  Once the crystalline form of ammonium chloride comes into contact with moisture it breaks down to a brownish salt which looks similar to the nitrate salts found on the top layer of soil in the depression between the mountains.  I suspect that these nitrate salts were sold as “fake” ammonium chloride because it has overlapping characteristics because of the nitrogen.

Turpan to Samarkand.png

Natural Sal Ammoniac occurs in places like the Turpan and Samarkand.  An important branch of the silk road runs from Turfan runs through Samarkand and into Europe.  Samarkand is a city in south-eastern Uzbekistan.  It is one of the oldest continuously inhabited cities in Central Asia.

In China, ancient names given for Sal Ammoniac are “red gravel” and “essence of the white sea.”  There were sal ammoniac mines in Soghd. Mohammadan traders passed it at Khorasan traveling towards China.  Kuča still yielded sal ammoniac at the beginning of the 1900s. There are ancient references to white and red varieties of sal ammoniac.  The mines in Setrušteh or سمرقند‎ (Samarkand in the Persian language) are described in classic literature as follows.  “The mines of sal ammoniac are in the mountains, where there is a certain cavern, fro wich a vapour issues, appearing by day like smoke, and by night like fire.  Over the spot whence the vapour issues, they have erected a house the doors and windows of which and plastered over by clay that none of the vapour can escape. On the upper part of this house the copperas rest.  When the doors are to be opened, a swiftly-running man is chosen, who, having his body covered over with clay, opens the door; takes as much as he can from the copperas and runs off; if he should delay he should be burnt.  This vapour comes forth in different places, from time to time; when it ceases to issue from one place, they dig in another until it appears, and then they erect that kind of house over it; if they did not erect this house, the vapour would burn, or evaporate away.”  (Laufer,1919)

Tibetans received this salt from India as can be seen from an ancient name they gave to it namely “Indian salt.”  There are records that it was harvested from certain volcanic springs from Tibet and Se-č’wan.  (Laufer,1919)  The same vapours are seen in the smokey mountains of Turfan.

Human-Made Ammonium Chloride

Just like saltpeter, sal ammoniac occurs naturally and is also generated through human endeavour.  The name, ammonia, came from the ancient Egyptian god,  Amun.  The Greek form of Amun is Ammon.  At the temple dedicated to Ammon and Zeus near the Siva Oasis in Lybia, priests and travelers would burn soil rich in ammonium chloride. The ammonium chloride is formed from the soil, being drenched with nitrogen waste from animal dung and urine.  The ammonia salts were called sal ammoniac or “salt of ammonia” by the Romans because the salt deposits were found in the area.  During the middle ages, ammonia was made through human endeavour through the distilling of animal dung, hooves, and horns.   (Myers, RL.  2007:  27)

The New-York Tribune of 31 January 1874 wrote the following.  “For centuries sal ammoniac was imported from Egypt where it is sublimed from camels dung.” An article, published in 1786 on Friday, 18 August in the Pennsylvania Packet, described the process of making sal ammoniac in Egypt as follows.  “Sal Ammoniac is made from soot arising from the burnet dung of four-footed animals that feed only on vegetables.  But the dung of these animals is fit to burn for sal ammoniac only during the four firsts months of the year when they feed on fresh spring grass, which, in Egypt is a kind of trefoil or clover; for when they feed only on dry meat, it will not do.  The dung of oxen, buffalos, sheep, goats, horses, and asses, are at the proper time as fit as the dung of camels for this purpose; it is said that even human dung is equal to any other.”

“The soot arising from the burnt dung is put into glass, vessels, and these vessels into an oven or kiln which is heated by degrees and at last urged with a very strong fire for three successive nights and days, the smoke first shews itself, and, in a short time after, the salt appears sticking to the glasses, and, by degrees, covers the whole opening.  The glasses are then broken, and the salt taken out in the same state and form in which it is sent to Europe.”  At this time, Egypt was one of the major suppliers of sal ammoniac to the European continent.

Discovery of gasses

– Joseph Black

At this point in the development of chemical technology, a much bigger development took place in which the discovery of nitrogen and ammonia is only a small part of.   In the 1770s scientists started to realise that the atmosphere is made up of various gasses.  This was the start of the chemical revolution and the discovery of gasses was, in a way, the major propellant.  Up to this time gasses were not regarded as a separate chemical entity and largely ignored in experimental work.  The drawback was major and real advances became only possible as this was being resolved.  One of its pioneers was Joseph Black (1728–1799).  Black is credited with the discovery of carbon dioxide (fixed air).

– Charl Wilhelm Scheele

The Swedish Chemist, Charl Wilhelm Scheele (1742 – 1786) prepared oxygen by heating saltpeter (potassium nitrate, KNO3) in 1770.  Somewhere between 1771 and 1772, he became the first scientist to realise that “air consists of two fluids different from each other, the one that does not manifest in the least the property of attracting phlogiston while the other … is peculiarly disposed to such attraction.” (Smil, 2001: 2)   Phlogiston was believed to be the substance present in all material that burns, responsible for combustion. The one substance is obviously oxygen and the other nitrogen.

– Daniel Rutherford

At the same time, Daniel Rutherford (1749–1819), a pupil of Black, obtained his doctorate in Medicine in 1772 from the University of Edinburgh.  In his “Dissertatio inauguralis de Aere Fixo Dicto, aut Mephitico” (Rutherford, 1772) he records the following experiment.  He placed mice in a closed-in environment.  Eventually, the mice will die and Rutherford expected to find was that the only air that is left will not be able to support life and a flame will not burn in it.  He removed the fixed or mephitic air (carbon dioxide) with a caustic potash solution (alkali).  He found a residual gas still incapable of supporting respiration or fire, similar to carbon dioxide, but unlike carbon dioxide, did not precipitate lime water and was not absorbed by the alkali.  He thus discovered a residue of his fixed or mephitic air.  He named it “aer malignus” or noxious air.”  (Munro and Allison, 1964)

– Joseph Priestley

Priestly, who is credited for the discovery of oxygen (1774 – 1775) presented experimental evidence similar to Rutherford’s before the Royal Society of London.  He, however, did not draw conclusions regarding the possible nature of the gas (Priestley, 1772).

– Isolation of Ammonia

The identification of nitrogen was “in the air”, so to speak and as we will see, never far removed from meat curing.  Sal Ammoniac (ammonium chloride, NH4Cl) was used since antiquity as a curing and preserving agent of meat and was investigated by none other than Joseph Black.  In 1756 he became the first to isolate gaseous ammonia by reacting sal ammoniac with calcined magnesia (Magnesium Oxide). (Black, 1893) (Maurice P. Crosland, 2004).  Scientists were now widely experimenting with gasses and along with air, gasses like ammonia received a great deal of attention.  It would later be discovered that nitrogen is its key constituent in ammonia along with hydrogen.

Following Black, ammonia was, for example, also isolated again by Peter Woulfe in 1767 (Woulfe), by Carl Wilhelm Scheele in 1770 (kb.osu.edu) and by Joseph Priestley in 1773 and was termed by him “alkaline air”. Eleven years later in 1785, Claude Louis Berthollet finally unraveled its composition. (Chisholm, 1911) (Berthollet, 1785)

Priestley, in Part II of his work, Experiments and Observations,  described work from between the years 1773 and the beginning of 1774.  In this document, he gives a reprint of an earlier publication on effluvia from putrid marshes.  Here he identifies ammonia and nitrous oxide.  (Schofield, RE.  2004:  98)

His discoveries on ammonia were the result of a consistent application of the English scientist, Stephen Hales’s (1677 – 1761) technique for distilling and fermenting every substance he could get his hands on or capture over mercury rather than over customary water so that the air would “release.”  He heated ammonia water and collected a vapour.  When it cooled down, it did not condense, proving it was air.  He called it alkaline air.  (Schofield, RE.  2004: 98, 103, 104)

More experiments showed him that alkaline air was heavier than common inflammable air but lighter than acid air.   It dissolved easily in water, producing heat and it was slightly inflammable in the sense that a candle burned in it with an enlarged colour flame before going out.  In the end, he not only described ammonia chemically, but also its mode of production, and its characteristics.   (Schofield, RE.  2004: 98, 103, 104)

– From Ammonia to Nitrogen

In 1781 the French Chemist, Claude Louis Bertholett became aware that something joined with hydrogen to form ammonia (NH3).  Three years later, Claude joined Lavoisier who was responsible for unraveling the composition of saltpeter along with de Morveau and de Fourcroy, in naming the substance azote.  (Smil, V.  2001:  61, 62)  Lavoisier named it from ancient Greek, ἀ- (without) and zoe (life).  He saw it as part of air that can not sustain life.  In 1790 Jean Antoine Claude Chaptal, in a French text on chemistry which was translated into English in 1791, gave it the name “nitrogen”.  He used the name ‘nitrogène’ and the idea behind the name was “the characteristic and exclusive property of this gas, which forms the radical of the nitric acid,” and thus be chemically more specific than “azote.””  (Munro and Allison, 1964)  As for ammonia, its modern name was given in 1782 by the Swedish chemist Torbern Bergman.  (Myers, RL.  2007:  27)  The discovery of hydrogen, the other component in ammonia, is credited to Cavendish in 1766.

A Hint of Nitrogen in Animals

The relation between nitrogen through ammonia and animal bodies was known from early on.  In 1785, Claude Berthollet reported to the French Academy of Sciences that he found that the vapor that came from decomposing animal matter was ammonia.  When he realised the gas, he found that it was composed of three volumes of hydrogen and one volume of nitrogen, or around 17% hydrogen and 83% nitrogen by weight.  He was very accurate in his measurements and the modern values of these are given as 17.75% and 82.25% respectively.  (Carpenter, 2003)

Techniques for Testing for Nitrogen

Key to the identification of nitrogen in animal substances was developing the tools to test for it.   One of the earliest tests was the oxidation of organic material in the presence of cupric oxide.  The gasses resulting from this reaction is then collected and measured.  It was extensively developed by none other than Gay-Lussac while he was professor at the Sorbonne, and later when he was a chemist at the Jardin des Plantes in Paris.  (Sahyun, M. (Editor). 1948)

The method of Gay-Lussac was modified by Jean Dumas (1800-1884) and used by Dumas’ contemporary, Liebig. Despite the many alterations of the basic method of micro procedures, the Dumas method would continue to be the preferred one well into the 1900s.  In 1841, F. Varrentrapp and H. Will developed a total nitrogen method.  This method is based on the liberation of ammonia by heating protein with alkali, followed by gravimetric estimation of the ammonia as its chloroplatinate.  (Sahyun, M. (Editor). 1948)

A downside to this method was the fact that it is slow and tedious with fundamental inaccuracies.  It had, however, specific technical advantages over that of the Dumas-method when applied to metabolic observations and it was used in many early studies.  The famous method we are all familiar with today is the Kjeldahl method.   It was developed by the Danish chemist, J. Kjeldahl (1849-1900), of Carlsberg, who in 1883 presented a much-improved method for catalyzed digestion of nitrogenous materials in sulfuric acid which allowed for the production of ammonia quantitatively.  (Sahyun, M. (Editor). 1948)

Nitrogen in Respiration

Antoine Lavoisier was inspired by Joseph Black, something that Lavoisier was not shy to admit.  He wrote Balck a letter, dated 19 November 1790, where he describes experiments on the respiration of human subjects.  He showed that oxygen is consumed and carbon dioxide evolved during this process.  Interestingly he showed that oxygen consumption increases by some 50% above the basal level after a meal (the modern specific dynamic action of food) and that in severe exercise, oxygen consumption can increase by as much as three-and-a-half times.  The measurements were accurate, even by modern standards.   Part of the letter states: “Legaz azote ne sert absolument à rien dans l’acte de la res piration et il ressort du poumon en même quantité et qualité qu’il y est entré” which translates to Nitrogen is absolutely useless in the act of respiration, and it appears from the lung in the same quantity and quality that it has entered it.

They had their test subjects exercise in a closed container.  They measured for oxygen and carbon dioxide.  They also measured the amount of nitrogen ingested during a meal before the experiments started and then, after exercise, the urine and stools were tested to see how much nitrogen was retained in the body or “lost” through the urine and stools.

The experiment was undertaken 18 years after the discovery of nitrogen.  It is regarded by many as the first metabolic experiment with nitrogen.  The experiments appear (D. McKie, personal communication, 1962) to have been based on studies made by Fourcroy in the late 1780s, using gasometric methods that were published in 1791 by Séguin.  They did not find any correlation between nitrogen and respiration.  Some researchers of the time still claimed that some nitrogen is lost from the body during respiration.  Today, most will simply subscribe to Lavoisier’s view that gaseous nitrogen plays no part in the nitrogen metabolism of the mammalian organism.  (Munro and Allison, 1964)  They believed that the balance of nitrogen ingested and that which was not recovered in stools or urine was probably lost through what they called “insensible perspiration.”  (Carpenter, 2003)

Antoine Lavoisier and Armand Seguin’s experiment of human respiration showed that breathing had no influence on nitrogen levels.  It had other positive results.  An increase in the output of carbon dioxide (carbonic acid, as they called it) during exercise was demonstrated.  They measured this at rest and while lifting weights.  This was by itself a step forward.  At the time it was believed that the only purpose of respiration was to cool the heart.   (Carpenter, 2003)

Lavoisier, in collaboration with a mathematician and one of the greatest scientists of the time, Pierre-Simon Laplace, identified the slow combustion of organic compounds in animal tissue as the major source of body heat.  In their experiments, they compared the heat produced by the guinea pig and the production of carbon dioxide with the heat produced by a lighted candle or charcoal. They used an ice calorimeter to measure heat production.  The instrument itself is very interesting.  It measures the heat generated by relating it to the weight of water released from the melting of the ice surrounding the inner chamber where the animal or burning material is housed.  The measurements are crude and not very precise, but results were consistent and it allowed the researchers to draw the conclusion of the origin of body heat.  (Carpenter, 2003)

Momentous political movements in France of the time would put an end to one of the most brilliant scientific careers of any person to have lived on earth.  Lavoisier returned to further studies on respiration and was arrested in 1793 during the Reign of Terror and kept in prison.  He pleased with the for a short stay of execution on the day of his trial in 1794, to be allowed one more experiment, but the judge is believed to have replied that the Republic had no need of “savants” (scientists), and he was guillotined the same afternoon. (Carpenter, 2003)

Nitrogen in Animal Matter

Lavoisier introduced order into the study of the new chemistry. One of his great achievements was the vigorous school of chemists he left behind.  Some of his students took up the work on organic compounds and applied procedures in which gas was either evolved or removed. Gay-Lussac (a pupil of Lavoisier’s collaborator, Berthollet) and Thénard worked out a system of organic analysis in 1810.  Accordingly,  the organic material is treated with potassium chlorate and the amount of oxygen and nitrogen liberated is measured (Partington, 1951). The Dumas procedure, which we eluded to above, remained the standard gasometric method of nitrogen analysis.  It was developed in 1830. (Partington, 1951). The studies made by Magendie on the importance of nitrogenous components in the diet was one of the matters to be elucidated by the new technique. (Munro and Allison, 1964) Viewed in this way, the persona and influence of Lavoisier continued to directly affect the work he started long after his untimely death.

It was confirmed that animal matter contains nitrogen and it was shown to be absent from sugars, starch, and fats.  It was long suspected that wheat flour contained matter with characteristics closely associated with animal matter.  This was proved, that gluten (the plant matter) has properties of animal matter, including the development of alkaline vapor when it was allowed to rot.  When potatoes were introduced, there was a debate if it could provide an adequate substitution for wheat because it did not have anything resembling gluten.  Was it the gluten that made wheat flour good food?  (Munro and Allison, 1964)

Bartolomeo Baccari (1682 – 1766) was a professor at the University of Bologna for most of his life.  In 1734, one of his papers entitled “de Frumento,” appeared.  In this paper, he gives details on how to prepare gluten which was found and later it was found to be the protein portion of wheat flour.  The following is translated from Latin:

“This is a thing of little labor. Flour is taken of the best wheat, ground moderately lest the bran goes through the sieve, for it ought to be purified as far as possible in order that all suspicion of mixture should be removed.  Then it is mixed with the purest water and agitated. What remains after this process is set free by washing, for water carries off with itself whatever it is able to dissolve. The rest remains untouched.”

“Afterward that which the water leaves is taken in the hands and pressed together and is gradually converted into a soft mass and beyond what I could have believed tenacious, a remarkable kind of glue and suitable for many purposes, among which it is worth mentioning that it can no longer be mixed with water. Those other parts which the water carries away with itself for some time float and render the water milky. Afterward, they gradually settle to the bottom but do not adhere together; but like a powder return upward at the slightest agitation. Nothing is more nearly related to this than starch or better, it is indeed starch.”

He classified the starchy material as flour.  He described the following characteristics.  It ferments to give acid spirits, indicating its “vegetable nature.” On the other hand, it had a characteristic of “animal nature” for “within a few days it gets sour and rots and very stinkingly putrifies like a dead body.”

This was an old way to distinguishing what we call today proteins from carbohydrates. There was a theory at this time that vegetable protein which is consumed by herbivores changes into the flesh and blood of the animal.  This was still prevalent during the time of Mulder and Liebig’s. (Sahyun, M. (Editor). 1948)  Another question was the source of the nitrogen in animal bodies.  Since nitrogen is most prevalent in the air around us, some chemists suggested that animals get the nitrogen from the air through a kind of combination must occur during an animal’s digestion of plant foods “so as to give the ingesta the characteristics that would allow them to be incorporated into the animal’s own tissues either for growth or replacement of worn-out materials.”  (Carpenter, 2003)  The mechanisms of nutrition were in a developmental process.

François Magendie: Nitrogen as the basis for Nutrition

A major step came from the work of Magendie (1783–1855) who linked the nitrogen of inanimate substances with that of living systems.  He was the first to recognise that there is a major difference between the nutritional value of food containing nitrogen and those without it.  Magendie grew up in revolutionary Paris and practiced as a surgeon before changing to physiology.

In his first work on the subject, reported to the Academy of Sciences in 1816, Magendie addressed the question of whether animals could access atmospheric nitrogen to “animalize” ingested foods of low nitrogen content.  (Carpenter, 2003)

In his 1816 article, “Sur les propriétés nutritives des substances qui ne contiennent pas d’azote.” (On the nutritional properties of substances that do not contain nitrogen),  Magendie famously described experiments on dogs that were only fed carbohydrate (sugar) or fat (olive oil) until they all died in a few week’s time. The conclusion is obvious that a nitrogen source was an essential component of the diet.

As we look back at these early experiments we can see that the results were complicated by vitamin deficiencies, yet they were the first approximations to an ideal—the long-term feeding experiment with purified foodstuffs—which has only been attained in recent years. They can rightfully be seen as forerunners of the classical procedure for establishing whether a nutrient is essential to the body, namely by excluding it from the diet and then looking for symptoms attributable to its deficiency.

In his “Elementary Compendium of Physiology for the Use of Students,” Magendie draws and even clearer distinction between nitrogenous and nonnitrogenous foods. The first edition appeared in 1817 and the third edition was translated into English in 1829. Magendie’s compendium of work is very different from earlier writers like Haller’s “Elementa Physiologiae,” (1757–65).  Magendie did not write in Latin and he clearly departed from the primeval forests of mystery and speculation.  His work is done with the illumination of bright sunshine of scientific observation and deductive reasoning.

Again, we have to give credit to the monumental work of Lavoisier.  Magendie’s success in the physiology of nutrition directly stems from the influence of Lavoisier’s vigorous school of chemistry, which had grown up in the interval.  Megandie followed his 1816 work where he fed dogs only carbohydrates or fat with new experiments. In these, he fed them exclusively on cheese or eggs, both nitrogenous foods.  The dogs survived indefinitely, although they were weak. Magendie concluded that “these facts . . . make it very probable that the azote of the organs is produced by the food.”

Magendie’s inquiring mind also extended to views on how the diet was utilized by the tissues of the body. In his textbook (p. 18), he says: … The life of man and that of other organised bodies are founded upon this, that they habitually assimilate to themselves a certain quantity of matter, which we name aliment. The privation of that matter, during even a very limited period, brings with it necessarily the cessation of life. On the other side, daily observation teaches, that the organs of man, as well as those of all living beings, lose, at each instant, a certain quantity of that matter which composes them; nay, it is on the necessity of repairing these habitual losses that the want of aliment is founded. From these two data, and from others which we shall make known afterward, we justly conclude, that living bodies are by no means always composed of the same matter at every period of their existence. . . . It is extremely probable that all parts of the body of man experience an intestine movement, which has the double effect of expelling the molecules that can or ought no longer to compose the organs, and replacing them by new molecules. This internal, intimate motion, constitutes nutrition. And again (p. 468), … Nutrition is more or less rapid according to the tissues. The glands, the muscles, skin, etc. change their volume, colour, consistence, with great quickness; the tendons, fibrous membranes, the bones, the cartilages, appear to have a much slower nutrition, for their physical properties change but slowly by the effect of age and disease.” (Munro and Allison, 1964) (14)

When one looks back at history, one tries to bridge the linguistic and cultural divide.  An important assumption underpinning Magendie’s work is that an animal species could be used as a model for humans; that our bodies are essentially of the same general character.  A possible reason for this is the interest that existed in France for studies in comparative anatomy.   (Carpenter, 2003)

Jean Baptiste Boussingault

Another active investigator in France in the 1830s, with a quite different background from that of Magendie, was also studying the source of an animal’s nitrogen-rich tissues. This was Jean Baptiste Boussingault, the great “farmer of Bechelbrom,” who had learned his chemistry in a school for mining engineers. After a period of adventurous geological exploration in South America, he returned, married a farm owner’s daughter and put his mind to agricultural science. He obtained a position at the Sorbonne in Paris, where he collaborated with J. B. Dumas, one of the leading French chemists, and divided his year between Paris and the farm.  (Carpenter, 2003)

It was Boussingault who realised in 1836, over sixty centuries after it was noted and recorded that manure and legumes were beneficial to crop production, that it was the nitrogen content in the soil or fertiliser which is important for plant nutrition. In 1838, he performed a number of experiments where he grew legumes in sand with no nitrogen in it. The legumes continued to grow and the only conclusion he could come to was that they took their nitrogen from the air.  How they did it, he still had no idea.   (Galloway, J. N, et al., 2013)  He was able to show that this was not possible for cereal grain.

His next subjects were cows and horses, whose common feeds were believed to be exceptionally low in nitrogen. First, he wanted to determine the level of feeding that would ensure that his animals are kept at constant weight, and then for 3 days, he recorded the animal’s feed, what was excreted and, in the case of the cow, its milk.  All these were analised for its nitrogen content. The results for the horse was that he received 8.5kg hay and oats, every 24 hours.  The daily nitrogen intake was 139g, and the nitrogen recovered in urine and dung came to only 116g. When the cow was fed on hay and potatoes the figures were as follows.  The daily intake of nitrogen was 201g and the recovered output, including 46g from milk, was only 175g. This showed that the animals’ feed provided enough nitrogen to meet their needs.  There was no need to speculate about them getting their nitrogen from the atmosphere.

It is important to have some understanding of how these trails were carried out.  Many thousands of “balance” trials followed the Boussingault tests that continue to be carried out until today. A drawback was the method he used to test for nitrogen.  The system of analysis required the sample to first be dried.  There would have been a loss of ammonia when he was drying urine and dung. This probably gives the reason why there seems to have been an apparent “positive” balance in these animals that were assumed to be in a steady state.”  (Carpenter, 2003)

Nitrogen and the Nutritional Value of Plants

Boussingault had proposed that the nutritional values of plant food could be extrapolated from their contents of nitrogen.  These speculations came from before he did his balance experiments with herbivores.  His reasoning was more or less as follows.  “Magendie has shown that foods that do not contain nitrogen cannot continue to support life, therefore the nutritional value of a vegetable substance resides principally in the gluten and vegetable albumin that it contains.” Researchers of the time knew that animal bodies contained minerals which they got from the food they ate. Even earlier, two workers had written that: “Beans are so nourishing because they contain starch, an animal matter, phosphate, lime, magnesia, potash, and iron. They yield at once the aliments and the materials proper to form and color the blood and to nourish the bones”. Perhaps in response to such criticism, Boussingault explained, “I am far from regarding nitrogenous materials alone as sufficient for the nutrition of animals; but it is a fact that where nitrogenous materials are present at high levels in vegetables they are generally accompanied by the other organic and inorganic substances which are also needed for nutrition”. It is clear from the context that the “organic substances” to which he is referring are starches and not any hypothetical trace nutrients.  (Carpenter, 2003)

Synthesis by plants

Dumas, a colleague of Boussingault’s concluded in the early 1800s that the plant kingdom alone was capable of synthesizing the kinds of nitrogenous compounds abundant in animal tissues. Then, from the observation that the overall reactions of animals were characterized by oxidation, he made the further generalization that the animal kingdom was only capable of oxidizing the materials that are obtained from its plant food. (Carpenter, 2003)

Ammonia, Nitrite, and Nitrate

Ammonia is changed into nitrites or nitrated through the action of what was called a “microscopic ferment.”  The next step would be the discovery of how nitrogen changes into its cousins and enters the earth and living plants and animals.

NollLab_lg
A science class uses microscopes in a lab in 1908. (University Archives Photo)

The afternoons with Jeppe became challenging as I tried to keep up with his lectures.  He seemed to remember the names and formulations off by heart and I was not always sure who or what we were talking about.  It was nevertheless engaging and I tried to keep up.

– How does nitrogen enter the plant kingdom?

The animal kingdom gets its nitrogen from the plant kingdom.  We now return to the matter of how nitrogen enters the plant world.  When we looked at the discovery of the microscopic world, we jumped to the discovery of nitrification and the reduction of oxygen in various nitrogen compounds.  With the background information on nitrogen and its role in nutrition, let’s look at the progression of thought on ways that nitrogen enters our world.

HB de Saussure (1740 – 1799) discovered that the nitrogen in plants does not come directly from the atmosphere.  (Bynum, WF, et al, 1981:  300)  He was born in Switzerland and became interested in biology and geography.  Most of his discoveries he made while scaling some of the highest mountain peaks and passes in the world.  He regarded the Alps as central to understand the geology of the world and spend much time there.

His idea was that nitrogen must be taken up through the roots of plants, through the decomposition of humus (9, 11).    (Bynum, WF, et al, 1981:  300)  Not everybody agreed with him and a debate developed that raged for almost 50 years.  The German chemist, Justice von Liebig (1803 – 1873), was the first to see nitrogen as an essential plant nutrient.  This discovery gave him the honour of being regarded as the father of the fertilizer industry.  Justice was also an important man in the meat processing industry.  He developed the manufacturing process for beef extract and founded a company, Liebig Extract of Meat Company, and later trademarked the Oxo brand beef bouillon cube. (10)

This question of how nitrogen was absorbed by plants remained very controversial (11).  Justice believed it is taken directly from ammonia gas in the air.  (Craine, JM,  2008:  70)  This was the state of affairs until a French chemist, Boussingault (1802 – 1887) demonstrated that plants are incapable of absorbing free nitrogen but were able to flourish even without humus as long as alternative sources of nitrates or ammoniacal salts are supplied.  (Bynum, WF, et al, 1981:  300)

Boussingault and his contemporaries saw the uptake of ammonia as purely chemical. (Bynum, WF, et al, 1981:  300)  What other way could there be?  The great German physiologist, Theodor Schwann, born in 1810, took a step closer to the solution.  He discovered that alcoholic fermentation and the fermentation that causes putrefaction was carried out by microbes. (12)  (Barnett, JA)

Louis Pasteur, born in 1822 grew up to become very important in the field of science.  He was the first one to suggest that microorganisms may be involved in the nitrogen absorption process of plant.  (Bynum, WF, et al, 1981:  300)  He studied the breakdown and reorganization of material that contained nitrogen by soil bacteria, fungi, and algae.  It seemed that nitrogen was not used up but was circulated.  Decaying humus gave ammonia, from which microorganisms constructed nitric acid and its compounds.  These were then absorbed by plants and turned into proteins and incorporated into living substance.  The cycle was completed by the death and natural decay of the plant and the animal. (Bynum, WF, et al, 1981:  300)  At the death of the animal, the process of nitrification was reversed and microbes were again responsible for breaking the molecules down until only gaseous nitrogen remained.

The German agricultural chemist, Hermann Hellriegel (1831-1895), discovered that certain plants (leguminous) take atmospheric nitrogen and “replenished the ammonium in the soil through the process now known as nitrogen fixation. He found that the nodules on the roots of legumes are the location where nitrogen fixation takes place.”  (Boundless, 2014)

Hermann did not discover how this is done. Martinus Willem Beijerinck (March 16, 1851 – January 1, 1931), a Dutch microbiologist and botanist, discovered that the small growth areas on the roots contained bacteria.  He called it rhizobia.  It is the rhizobia that are responsible for changing the nitrogen to ammonium.  Ammonia is NH3 and ammonium is NH4.  (Boundless, 2014)  Soon more ways were discovered that changed nitrogen in the air into a form that plants can absorb.

Berthelot described in 1885 how lightning was responsible for nitrogen fixation before he too turned his attention to microscopic organisms in the ground that is responsible for nitrogen fixation. (Elmerich, C, Newton, WE.  2007:  3)  The energy of a lightning strike disrupts the nitrogen (N2) and oxygen (O2) molecules in the air producing highly reactive nitrogen and oxygen atoms that attract other nitrogen (N2) and oxygen (O2) molecules that form nitrogen oxides that eventually become nitrates. (Zumbal, 2000:  924)  Alternatively, Beijerinck’s rhizobia bacteria fix the atmospheric nitrogen directly (Boundless, 2014)  in small growths on plant roots such as beans, peas and alfalfa (Zumbal, 2000: 924), or animal droppings and urea or dead animal or plants provide saprobiotic bacteria, nitrogen or nitrogen-family members that can be changed.

Nitrogen is turned directly into either ammonia (NH3) or ammonium (NH4) or into nitrate (NO3).  Nitrifying bacteria turns the ammonia into nitrite.  Nitrite is toxic and nitrifying bacteria change the nitrites into nitrates that either becomes plant food along with nitrate’s that are formed during lightning strikes or are changed back into nitrogen by denitrifying bacteria.

Chemical Engineering at MIT
Chemical Engineering at MIT

A friend of Jeppe, Dr. Polenski found in 1891, months before I arrived in Denmark, that when he mixed curing brine for bacon with Saltpeter and tested it, that he found nitrate to be present.  After a week, when he tested it again, there were only nitrites. The same with the meat that he cured.  At the beginning of the week, there was nitrate present in the meat and later he found only nitrites. (13)

The notion that bacteria are responsible for changing the nitrate to nitrite was well established by the time he did the experiment and so, his conclusion that what had happened in the brine was the result of bacteria was reasonable.  It would not surprise me if it would be shown that nitrite is responsible for curing and not nitrate. (8)

I realised that saltpeter was a key part of the world we live in.  The energy of the acid in the air, harnessed by an entire world of microorganisms that probably occur in every environment on earth and changed into a format that plants and then humans and animals can absorb.    An acid, coupled with a salt, helping us to preserve meat and change pork meat into bacon, grow plants, feed oceans and drive the processes of the earth.  By it we fight wars, we grow crops and we eat and live!

food 2

At night after supper we are reading Foods by Edward Smith.  He wrote on bacon and said, “bacon is the poor man’s food, having a value to the masses which is appreciated in proportion to their poverty, and it is a duty to offer every facility for its production in the homes of the poor.” (Smith, Edward, 1876:  65) The reason why it is good for the poor is that it can be cooked in water and the liquid part can be given to the children and the solid part consumed by the parents and “thus both be in a degree pleased, if not satisfied.” (Smith, Edward, 1876:  65)

He continues to say that “it is also the rich man’s food, for the flavour, which is naturally or artificially acquired by drying (and curing), is highly prized, and although it may be taken as a necessary by the rich, it is in universal request as a luxury”  (Smith, Edward, 1876:  65)

This is our business plan.  To produce the best bacon on earth.  Uncle Cornelius passed away after a full life and I can not help to see our current quest as a necessary evolution of time as young and new thoughts replace older methods.  The evolution must in the first place be predicated on sound science as well as common sense.

This is then your chance to discover the nitrogen cycle from the perspective of a meat scientist.  I miss you, my little girl.  There is not a single day that I don’t think off you!  It’s late.  I am sure that you are fast asleep by this time and that you are holding your bear and dream of the cumming summer.

I learn so much and still, you are my biggest lesson in life.  Your love and your spirit have taught me how to live myself!

I count the days till I see you guys again!  I miss you all so much and love you!

Your Dad.


Practical Applications for the Modern Bacon Curer

In this section, I highlight some of the points of application in the modern high throughput bacon plant.

A friend of mine from the bacon industry in Castlemaine, Australia recently interacted with me on the matter of total meat content in bacon.  Nitrogen is a constituent of the meat protein and important in its nutritional value.  This identification and the subsequent determination of a phenomenally stable nitrogen percentage in meat lead to a number of important applications and implications, among others, a way to determine lean meat content and total meat content in meat processing.

A good summary of the thinking early in the late 1800s and early 1900s on the subject exists in the old South African Food, Drugs and Disinfectants Act No. 13 of 1929 (See note 1).  It has subsequently been repealed, but the basis of the law is still very much applicable. As an important historical document, it sets out the determination of total meat content.  It essentially remained unchanged (apart from minor updates).

The calculations of total meat content are defined in subparagraph 4 (iv) which reads as follows: “In all cases where it is necessary to calculate total meat under regulations 14 (1), (2), (3) and (4), the formula used shall be:—

Percentage Lean Meat = (Percentage Protein Nitrogen × 30 ).
Percentage Total Meat = (Percentage Lean Meat + Percentage Fat).

The questions of interest are how did they arrive at this and how accurate an indication is it of total meat content?  What is the relationship between nitrogen and nutrition?  When decay takes place, what happens with the nitrogen in the protein?  How does the amount of nitrogen we consume determine the total nitrogen content of our bodies or any animal or plant for that matter?  What is the value of nitrogen to the body which makes it essential for nutrition?  How does nitrogen move from a plant or an animal into our bodies to provide nutrition?  What is the impact of processing on nutrition and the total nitrogen content?  Can the standard calculation for fresh meat be applied to processed products?  Lastly and equally fascinating, what are other sources of nitrogen that can increase the total nitrogen count and skew the nitrogen count in a product and its relationship and to meat content.

This short series of articles set out to deal with these fascinating issues.  In this first article, we will look at the time from the start of the chemical revolution to Boussingault.   Sincere thanks to my friend in Castlemaine, Australia for provoking a fascinating line of inquiry!


Further reading

From the start of the Chemical Revolution to Boussingault

Fathers of Meat Curing

Saltpeter:  A Concise History and the Discovery of Dr. Ed Polenske

The nitrogen cycle and meat curing


green-previous  green-home-icon    green-next


(c) eben van tonder

Bacon & the art of living” in book form

Stay in touch

Like our Facebook page and see the next post. Like, share, comment, contribute!

Bacon and the art of living

Promote your Page too


Notes

(1)  After a short service in the Woodstock house, the procession moved to the Groote Kerk where Jacobus has been an elder.  The coffin was carried into the church by the Cape premier, Cecil John Rhodes, Sir John Henry de Villiers (subsequent chief justice of the Union), JW Sauer, Onze Jan Hofmeyer, Sir Gordon Sprigg, Colonel F. Schermbrucker, ML Neetling and DC de Waal.

After the service the funeral procession moved to the Cape Town station, where a special train took the mourners to the Maitland Cemetery.  The coffin, of Cape teak, was lowered into the ground which Jacobus picked himself.

The grave was filled up and wreaths were laid on top.  One from David and Johanna Graaff, a second from John and Rosetta Graaff and a third from Jacobus and Susan Graaff. (Dommisse, E, 2011:  48, 49)

WP_20141019_12_03_36_Pro__highres
Jacobus Combrinck’s grave in the Maitland Cemetery.

WP_20141019_12_04_07_Pro__highres
The funeral procession would have walked along this path from the train tracks at the far top side of the picture to Jacobus’s grave on the right, under the tree, on the right.

WP_20141019_11_52_56_Pro

WP_20141019_11_52_42_Pro

The affection from the Graaff brothers who were responsible for erecting the gravestone is evident.  At the top, the words, “Ter Dierbare Herinnering aan Jacobus A. Combrinck,” “For affectionate remembrance of Jacobus A. Combrinck.”

Under Jacobus’s birth date and date of passing, the inscription in Dutch reads, “Ik weet op wien te vertrouen,” “I know in whom to trust.”

Underneath is written in Dutch,”Opgericht door zyne dankbare neven de broeders Graaff,” “Erected by your grateful nephews, the brothers Graaff.”

David took over Jacobus’s position in the Legislative Council of the Cape Colony soon after his passing.

The following notice appeared in a colonial newspaper.

The_Colonies_and_India_Sat__Oct_10__1891_
A notice published on page 11 in The Colonies and Indian under the heading “Colonial, Indian and American News Items” on 10 Oct 1891.

(2) The Woodstock house was previously owned by a highly respected judge, Henry Cloete in the suburb of Papendorp (later to be renamed, Woodstock).  He enlarged it greatly.  The house was built on an estate where Jacobus planted trees, erected a water mill of his own design, cultivated a splendid flower garden.  (Simons, PB, 2000:  14)

(3)  Sir Gordon Sprigg, prime minister before Rhodes ousted him, was moved when he heard the news of Combrink’s death.  He said, “A good man has gone from among us.”  Rhodes apparently only slipped a posy of white and purple violets into his coffin and said nothing.  These two powerful men were never the best of friends. (Simons, PB, 2000:  27)

(4)  When doing trials at the then Vion Factory in Malton, Ken Pickles was the NPD (New Product Development) manager.  A young intern from Brazil would walk behind him and every time we went to the curing tanks, he would ask the young man this question.  It’s an image that I will never forget.

(5) An anaerobic organism or anaerobe is any organism that does not require oxygen for growth.

(6) Processed meats many times contain bacteria, many of which are responsible for changing nitrate to nitrite. “This conversion proceeds more rapidly in unpacked bacon than in the vacuum-packed variety, a difference which has been ascribed somewhat surprisingly to the low reducing activity of anaerobic bacteria. (Hill, MJ. 1991: 96)

(7) The nitrate and nitrite in salts are primarily responsible for the curing activity in meat. “The reduction of nitrate (NO3-) salts to nitrite (NO2-) and then to gaseous NO and its subsequent reaction with myoglobin to form the nitrosyl-myoglobin complex forms the basis for cured meat flavour and colour.

It was also later realized that it is bacteria that first converts nitrate into nitrite, which is the mechanism underlying in the preservation of food. Nitrite in meat is responsible for inhibiting the growth in aerobic bacteria (especially the spores of Clostridium botulinum), retard the development of rancidity during storage, develop and preserving the meat flavour and colour, stabilizing the oxidative state of lipids in meat products.” (Dikeman, M, Devine, C, 2014: 436)

(8)   The fact that nitrate is not the curing agent, but nitrite was in fact discovered soon asfter 1891.  One of the men at the forefront of these discoveries were Prof. D. R. Hoagland, professor of plant nutrition, University of California (www.nature.com).  He suggested in 1908 that the “reduction of nitrate to nitritenitrous acid and nitric oxide was by either bacterial or enzymatic action or a combination of the two and was essential for NOHb formation. The scientific knowledge led to the direct use of nitrite instead of nitrate, mostly because lower addition levels were needed to achieve the same degree of cure.” (Pegg, RB, Shahidi, F. 2000)

In keeping with our interest in the person and his discovery, the following notice was published at the death of Prof. Hoagland by the University of California.
“1884-1949

Dennis Robert Hoagland, Professor Emeritus of Plant Nutrition, died September 5, 1949. His life had been fruitful in achievement and stimulating in quality.

Professor Hoagland was born in Golden, Colorado, on April 2, 1884. He attended the Denver public schools and in 1903 entered Stanford University, graduating with an A.B. degree in the Chemistry major in 1907. After a fall semester of graduate work, he accepted a position at the University of California in January 1908 as Instructor in Animal Nutrition. From that time until his retirement June 30, 1949, with the exception of the period 1910 to 1913, his academic life was associated with the Berkeley campus.

About 1910 the U. S. Department of Agriculture became concerned with the alleged injurious effects of food preservatives on humans. A consulting board of scientific experts was set up and Professor Hoagland became a member of its staff. This assignment took him to the University of Pennsylvania where in addition to his research he found opportunity to continue his graduate studies in chemistry. It is evident that this early experience introduced him to the intriguing problems of biochemistry and this interest once developed became his major scientific concern the remainder of his career. In 1912 he accepted a graduate scholarship at the University of Wisconsin in the field of Animal Biochemistry, a field there cultivated with distinction by E. V. McCollum and E. B. Hart, and he was awarded the M.A. degree in 1913.

In the fall of 1913 he returned to California as Assistant Professor of Agricultural Chemistry. This area of knowledge, through the stimulating domination of Professor Hilgard, concerned itself with the soil and crop problems confronting California agriculture. Professor Hoagland found no difficulty in adapting himself to this new emphasis. It was probably his diversified early experience that made it possible for him later to develop on this campus a world center for the study of interrelated plant and soil problems. His broad interest did not lead him to scatter his efforts, however. He early demonstrated an ability to clearly outline a segment of the field and vigorously attack it, without restricting his vision of the entire complex problem. It was this quality which enabled him to achieve so significantly.

Professor Hoagland became head of the newly created Division of Plant Nutrition in 1922. Under his guidance and stimulation, this became more than a “Division” in the College of Agriculture: it was in effect what the Germans might have termed an “Institut für Pflanzen und Boden Wissenschaft.” It was a dynamic research center in which both basic and practical problems of plant oil interrelationships were studied with enthusiasm and insight; the laboratory was a magnet which drew students and mature investigators from all parts of the world. His own contributions to the research center’s activities were many and important. It was the early disclosure by himself and associates of the phenomenon of so-called “active absorption” of salts by living cells, both plant and animal, that compelled a complete reappraisal of salt absorption processes. His own research and that of his students led to new discoveries on the need and function of “trace” chemical elements–elements required by living cells in such minute amounts as to escape detection except by the use of the most refined techniques. These and other revelations constituted the leaven which activated investigations in many associated fields. His laboratory was a center with a radiating influence which reached out and touched other great scientific centers, and also the lone worker at an isolated post.

Professor Hoagland entered fully into the academic life of the University. He served as a member, then as chairman, of the Budget Committee and as a member of many other Senate and administrative committees. He was a member of numerous scientific organizations, including the National Academy of Science, and served on important national scientific boards. Many honors came to him. The American Society of Plant Physiologists presented him with the Stephen Hales Award in 1929; the annual $1,000 prize of the American Association for the Advancement of Science was given to him and an associate jointly in 1940. He was selected as Faculty Research Lecturer at Berkeley in 1942 and the same year delivered the John M. Prather Lectures at Harvard. In 1946 he was awarded the Barnes Life Membership in the American Society of Physiologists.

Professor Hoagland was married to Jessie A. Smiley in 1920. She died in 1933 leaving three sons, all of whom are graduates of this University. He did not possess a rugged constitution and the last few years of his life were marred by illness. But almost to the last he kept a faculty for keen appraisal of scientific and social situations and an interest in human events of the most diverse sort. He was a man of judgment, of tolerance, and of discernment, one who abhorred hypocrisy and admired honesty. He was the quality out of which great human structures are built.

W. P. Kelley D. I. Arnon A. R. Davis” (CDLIB)

(9)  Humus is decaying organic matter.  (Bynum, WF, et al, 1981:  300)

(10)  The trademark was granted in 1899 for Oxo.

(11)  The German chemist, Justice von Liebig (1803 – 73), continued to believe that plants got their nitrogen from the air (in the form of ammonia).  (Wikipedia, Justice_von_Liebig)  He has popularised a principle developed in agriculture science by Charl Sprengel (1828) and was called Liebig’s Law of the Minimum, often simply called Liebig’s law or the law of the minimum. It states that growth is controlled not by the total amount of resources available, but by the scarcest resource (limiting factor)  (Wikipedia, Law_of_the_Minimum)

(12)  He also attributed fermentation to microorganisms.

“Schwann is famous for developing a ‘cell theory’, namely, that living structures come from formation and differentiation of units (the cells), which then constitute the bodies of organisms (Schwann, 1839). His paper on fermentation (Schwann, 1837) was entitled ‘A preliminary communication concerning experiments on fermentation of wine and putrefaction’. Using a microscope, Schwann examined beer yeast and described it as resembling many articulated fungi and ‘without doubt a plant’. His conclusions from his observations and experiments were unequivocal, revolutionary and correct: The connection between wine fermentation and the development of the sugar fungus is not to be underestimated; it is very probable that, by means of the development of the fungus, fermentation is started. Since, however, in addition to sugar, a nitrogenous compound is necessary for fermentation, it seems that such a compound is also necessary for the life of this plant, as probably every fungus contains nitrogen. Wine fermentation must be a decomposition that occurs when the sugar-fungus uses sugar and nitrogenous substances for growth, during which, those elements not so used are preferentially converted to alcohol.

In one of his experiments, Schwann boiled some yeast in a solution of cane sugar in four stoppered flasks. After cooling, he admitted air into the flasks: for two flasks, the air was first passed through a thin red-hot glass tube (analysis showed this air still to contain 19·4 % oxygen); the other two flasks received unheated air. Fermentation occurred only in the latter two flasks. Schwann’s conclusion was important:Thus, in alcoholic fermentation as in putrefaction, it is not the oxygen of the air which causes this to occur, as previously suggested by Gay-Lussac, but something in the air which is destroyed by heat.

In this notable 1837 paper, Schwann anticipated observations made by Pasteur over twenty years later, writing:Alcoholic fermentation must be regarded as the decomposition effected by the sugar fungus, which extracts from the sugar and a nitrogenous substance the materials necessary for its own nutrition and growth; and substances not taken up by the plant form alcohol.

(Barnett, JA.   1998, 2000)

(13)  The chemist, Eduard Polenske (1849-1911) (Wikipedia. Pökeln), was born in Ratzebuhr, Neustettin, Pommern, Germany on 27 Aug 1849 to Samuel G Polenski and Rosina Schultz. Eduard Reinhold married Möller. He passed away in 1911 in Berlin, Germany. (Ancestry.  Polenske)  He was working for the German Imperial Health Office when he made the discovery about nitrite in curing brine. (Wikipedia.  Eduard_Polenske)

The Imperial Health Office was established on 16 July 1876 as a focal point for the medical and veterinary in Berlin. First, it was the division of the Reich Chancellery and since 1879 the Ministry of the Interior assumed. 1879, the “Law concerning the marketing of food, luxury foods and commodities” was adopted, including the Imperial Health Office was responsible for its monitoring.  Erected in 1900 Reichsgesundheitsrat supported the Imperial Health Office in its tasks.  (Original text:  “1879 wurde das „Gesetz betreffend den Verkehr mit Lebensmitteln, Genußmitteln und Gebrauchsgegenständen“ verabschiedet, für dessen Überwachung unter anderem das Kaiserliche Gesundheitsamt zuständig war.”) (Wikipedia.  Kaiserliches Gesundheitsamt)

The spelling of his surname varies between Polenski and Polenske.

(14) “This prophetic insight into the continual renewal of body constituents, differing in rate in different tissues, succumbed to the theories of Liebig, Voit, Folin and others, and was not regained until more than a century later when Schoenheimer’s publication in 1942 of “The Dynamic State of Body Constituents” demonstrated the instability of tissue components by isotopic means.”  (Munro and Allison, 1964)

References

Barnett, JA.   1998, 2000.  Extract from lectures.  Beginnings of microbiology and biochemistry: the contribution of yeast research.  http://mic.sgmjournals.org/content/149/3/557.full

Bynum, WF, Browne, EJ, Porter, R.  1981.  Dictionary of the History of Science.  Princeton Legacy Library.  Macmillan Press.

Craine, JM.  2008.  Resource Strategies of Wild Plants.  Princeton University Press.

Danchin, A.  From Lamarck to Semmelweis, Transformation of chemical biology1800 – 1849:  http://www.normalesup.org/~adanchin/history/dates_1800.html

Dommisse, E. 2011.  First baronet of De Grendel.  Tafelberg.

Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial …

Elmerich, C, Newton, WE.  2007.  Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associations.  Springer.

Laufer, B.,  1919, Sino-Iranica, Field Museum of Natural History, Publication 201, Anthropology Series Vol XV, No. 3

Myers, RL.  2007.  The 100 most important chemical compounds.  Greenwood Press, Westport.

Pennsylvania Packet, Friday, 18 August 1786

Schofield, RE.  2004.  The Enlightened Joseph Priestly.  The Pennsylvanian State University

Smith, Edward.  1876. Foods. D. Appleton and Company, New York.

Simons, Phillida Brooke. 2000. Ice Cold In Africa. Fernwood Press

Smil, V.  2001.  Enriching the Earth.  Massachusetts Institute of technology.

Waksman, S. A..  1927.  Principals of Soil Microbiology.  Waverly Press.

Zumbal. 2000. Chemistry, 5th edition.  Houghton Mifflin Company.

https://www.boundless.com (Early Discoveries Nitrogen Fixation)

http://en.wiktionary.org/wiki/azote

http://en.wikipedia.org/wiki/Horace-Benedict_de_Saussure

http://en.wikipedia.org/wiki/Justus_von_Liebig

http://en.wikipedia.org/wiki/Claude_Louis_Berthollet

http://en.wikipedia.org/wiki/Nitrogen_cycle

Pictures

Figure 1:  From Simons, Phillida Brooke. 2000. Ice Cold In Africa. Fernwood Press, page 9.

Figure 2:  http://fletchingtonfarms.wordpress.com/

Figure 3:  http://today.uconn.edu/blog/2011/09/the-evolution-of-biology-at-uconn/

Figure 4:  http://web.mit.edu/cheme/about/history.html

Figure 5:  From http://www.foodhistory.com/foodnotes/road/cwf1/

Figure 7 – 9:  Photos of Combrinck’s grave by Eben.

Figure 10:  The Colonies and Indian, 10 Oct 1891, p 11.

 

Chapter 08.05 The Polenski Letter

Bacon & the Art of Living 1

Introduction to Bacon & the Art of Living

The quest to understand how great bacon is made takes me around the world and through epic adventures. I tell the story by changing the setting from the 2000s to the late 1800s when much of the technology behind bacon curing was unraveled. I weave into the mix beautiful stories of Cape Town and use mostly my family as the other characters besides me and Oscar and Uncle Jeppe from Denmark, a good friend and someone to whom I owe much gratitude! A man who knows bacon! Most other characters have a real basis in history and I describe actual events and personal experiences set in a different historical context.

The cast I use to mould the story into is letters I wrote home during my travels.


The Polenski Letter

June 1891

My dear Son,

This weekend we had plans to visit the geology museum at the University of Copenhagen.  It is summer in Denmark and the demand for our bacon is very good.  We all agreed that we would go next weekend and put in extra work on Saturday to get through our work.  Next weekend Uncle Jeppe will not be able to join us but we will all still go, capitalising on good weather we are having.  I am not disappointed at all.  The most unexpected set of facts became known to us.

the_noord-nieuwland_in_table_bay_1762
The Noord Nieuwland in Table Bay 1762

There is much that we can learn from the Danish nation.  Their food, the strange shops, elevated above the streets, the beer and the warm people.   I realised that the culture of this amazing land is having just as big an impact on me as what I am learning about the curing of bacon.  These people set their mind to a task and then work to achieve the goals.  They not only learned from the Irish system of curing but took it to new heights by combining it with their powerful and unique cooperative model!  I am learning the mechanics of a bacon curing business and spend a lot of time on the topic of saltpeter.  Andreas gave me a word of caution that knowing the steps of a process and understanding the process are two different things.  My understanding of the steps in bacon production will flow from my understanding of saltpeter.

No sooner did I hear those words from Andreas when the ever-resourceful Jeppe presented me with the next gold nugget in my education.  How it happened that I came to Europe at this time, is remarkable.  It is exactly in this epoch when humans are discovering that, despite the fact that saltpeter has been used for thousands of years to cure and preserve meat, there is an even more fundamental principle behind it that stems from the composition and nature of saltpeter.  This fundamental principle is a relative of saltpeter or sodium nitrate, called sodium nitrite.  The “a” changes to an “i“.

FOODS by Edward Smith

After supper, at the Østergaard home, we follow another great Danish tradition. We read together and discuss what was read.  This is customary in many households. The Danes have a  practicalness about them.  As I have seen from their unique high school model, they never stop learning and if something works, they adopt it.

Andreas’ dad chose as a book to read every night after supper, called Foods, written over 20 years ago in the 1870s by an Englishman, Edward Smith.  He helped me to see the curing of meat as both a necessity and a delicacy.  We cure meats because, for the most part, using modern curing methods, cured meat tastes great.  On the other hand, meat curing was started to impart longevity;  to prevent spoilage.

Back home we are familiar with the value of meat that “last.”  In Europe and England with their growing populations and vast navies that have to be fed, it has been an obsession and a priority to solve the problem of conserving meat for future use.  Edward Smith says in his book that “the art of preserving meat for future use, with a view to increase the supply and lessen the cost of this necessary food (meat), is of very great importance to [England] and all the available resources of science are now engaged in it.” (Smith, 1876: 22)  This meant that the best scientists of the time devoted at least part of their work to unravel the secret of meat curing in order to develop mechanisms to manipulate the process.  The discovery that it is not actually saltpeter (nitrate) that cures meat but nitrite grows out of this focus.

Smith lists the main ways that meat preservation is done, as “by drying, by cold, by immersion in antiseptic gasses and liquids, by coating with fat or gelatin, by heat, salted meat and by pressure.” (Smith, 1876: 22 – 38)  All have their benefits and disadvantages and I have a feeling that over the years, the technology within any one of these groups may develop, but these broad categories will remain and continue to be available to the public.

Edward Smith says that pork is particularly prized over beef and mutton because of the  “taste, but chiefly perhaps [due] to the universal habit among the peasantry of feeding pigs, which has descended from Saxon times.  Moreover, there is a convenience in the use of it, which does not exist with regard to beef and mutton, for in such localities the pork is always pickled and kept ready for use without the trouble of going to the butcher, or when money could not be spared for the purchase of meat.”  Pigs proved to be an equally prized meat in the new world due to the “ease with which pigs are bred and reared, and the meat preserved, whilst there is great difficulty in obtaining a sufficient number of persons, in a thinly populated country or a small village, to eat a sheep or ox whilst meat is fresh.  (Smith, 1876: 59)

“Bacon is made when cuts from the pig are preserved by salt and saltpeter.”  (Smith, 1876: 64).  This gives bacon its characteristic pinkish/ reddish colour, a nice flavour, and it lasts a long time before it tastes “off”.  This is the kind of thing we learn at night.  After a good supper, we discuss what has been read for an hour or two before retiring to bed.

At Uncle Jeppe’s bacon curing factory I started working in the curing department where we mix herbs, spices and salts.  Uncle Jeppe is a knowledgeable man and it seems as if he has been around in the meat industry forever.  I have not asked him any question that he did not know the answer.

Saltpeter is the curing salt for bacon and hams which I work with every day in the curing department.  When we do dry curing, we use 1.25 st. (10 pounds) salt, 0.375 st. (3 pounds) of brown sugar, 0.04 st. (6 ounces) of black pepper and 0.02 st. (3 ounces) of saltpeter.  We use 1.25 st. (10 pounds) of this mixture per 12.5 st. (100 pounds) of meat.  (1, 2, 3)  The Irish system of mild cured bacon calls for a liberal use of saltpeter and the purer form called sal prunella.  It is military-grade refined saltpeter. This is the main curing system we use and in both dry curing and tank curing (as mild cure is also called), it is a key ingredient.

What confused me much about saltpeter was that Trudie’s dad, Anton, also talks about the value of phosphates and saltpeter in fertilizing their fields in the Transvaal.  We know that it is the explosive power in gunpowder.   I know that the Dutch East Indian Company, as well as the English East Indian Company, were created, in large part, for the purpose of transporting saltpeter from India to Amsterdam, London and other European cities like Copenhagen for fertilizer and to make gunpowder. How can this one substance be useful for such diverse applications?

The power of saltpeter is the fact that it contains nitrogen and nitrogen is one of only two elements, with carbon, that can exist in 8 oxidation states.  This means that nitrogen can react in a diverse and complex way and, like carbon, is foundational to all of life.  The two substances that contain nitrogen, most familiar to us, are saltpeter and ammonia.

The nitrogen in saltpeter makes it very reactive, giving it an explosive power.  In saltpeter it has a particular effect on blood, explaining the fact that it gives cured meat its pinkish/ reddish colour.  Nitrogen exists in the first place as a gas in our atmosphere and comes into our world in different ways.  Remember the lecture I have Minette and the baboons on the Witels about how saltpeter is formed?  I said that there are other ways in which atmospheric nitrogen is converted into a salt that we can use.  The most important process is not through the action of lightning as I explained on the Witels but through microorganisms with the ability to take it from the air and convert it directly to plat food.

Dr. Eduard Polenski – Nitrate and Nitrite

Uncle Jeppe told Minette and me that he will return to the fascinating story of how this was discovered but must be patient to hear this another day.  The first very tentative step to identify the “real” curing agent came when a friend of Uncle Jeppe discovered something remarkable.  His friend’s name is Dr. Eduard Polenske (4), a chemist, working at the Imperial Health Office in Germany.  Jeppe tells me that 1891 will forever be remembered as a watershed year for Woody’s since it is the year I arrived in Denmark and started learning about bacon curing; for the curing industry in South Africa since it is the year when Woody’s took the first steps to excellent bacon in Africa; and for the curing industry around the world because of Dr. Polenskis’ discovery.

He tested and saw that curing brine (the curing salts) and cured meat contain nitrite. This is remarkable since we know that saltpeter or nitrate does not contain nitriteNitrate is codecogseqn-2.  The one oxygen atom in the nitrate composition is not as tightly bound as the other two and is easily stripped away.  The new compound is nitrite.  On the other hand, nitrite (codecogseqn-5) has the affinity to combine with an extra oxygen atom to again form nitrate (codecogseqn-2). It is a very volatile compound. Nitrite is then when one of the three oxygen atoms is removed from the molecule and we have codecogseqn-5.  It does not look like something important but it changes the nature of the compound. 

When meat is cured with saltpeter, nitrate (codecogseqn-2) is added.  If Dr. Polenski tested the brine and meat and found nitrite (codecogseqn-5) present, the only way this could occur is if somehow the one oxygen atom was stripped of the saltpeter molecule to form nitrite (codecogseqn-5).

The fact that he discovered nitrite in the curing brine is of concern because nitrite is toxic. I know nitrite very well! In Cape Town, as is done around the world, the local water is tested for nitrites every day and if the levels are too high, one can not drink the water.  It is so important that newspapers report the nitrite counts in the water on a weekly basis.  Farmers can suffer loss if their livestock drinks from this contaminated water.  For humans and animals, it can be fatal.

The Value of Speed

Before Uncle Jeppe learned about Dr. Polenskis’ findings in 1891, what we knew is that only saltpeter or nitrate is used to cure meat.  We also know that the Irish system of curing compared to dry curing cures the meat much faster. This matter of the speed of curing is important.  Dry curing is accomplished in 28 days where mild cured bacon can be produced in 19 days. On farms, long curing is generally not a problem, but for a commercial curing operation, it means that you keep large stocks of bacon that are in the process of curing. If you produce bacon for household consumption, that is one thing, but when you have an army to feed, speed is of the essence.

The question has been asked why mild curing cures meat faster than dry curing and various possible answers have been discussed.

The Wiesbaden Meetings

Jeppe and Ed met up in Wiesbaden, Germany, earlier this year.  This has been an annual winter ritual for the two men taking their annual retreats at the same time.   They became acquainted at the  General Congress on Hygiene in Brussels in 1852.  It is exactly the hygienists that Dr. Ed fears will be most concerned about the fact that he found nitrites in cured meat.

Both men attended the conference and struck up a friendship based on their shared passions.  Wiesbaden is famous for its hot springs since ancient Roman times and the second shared love between these men, besides meat technology and science, is their love for hot springs.

They have been hosted each year by an equally interesting man, Francois Blanc, at one of his gambling resorts in Wiesbaden.  It is said that he is the man who made Wiesbaden what it is today.  Jeppe describes Blanc as a mighty wizard with an eye, quick to see the possibilities of a situation, with a brain to plan and a hand to execute.  His ambitions and achievements are great across Germany, yet, Jeppe tells me that his tastes are simple.

His clothes do not attract any attention and he wears his spectacles on the tip of his nose.  He does not pay attention to flattery, yet, he is a hard-headed, silent man without any enthusiasm and equally without any weaknesses.  He keeps lavish tables, yet he himself eats sparingly.  His wine cellar rivals those of the autocrats in Russia, yet, he himself only drinks mineral water.  He is one of the largest gambling hall owners in Europe, yet, for entertainment, he may occasionally play Dominoes and frequently goes on a drive through the countryside with his wife.

It was at their annual retreat at Wiesbaden, earlier this year, where Dr. Ed told Jeppe about a monumental discovery.  Dr. Ed is not a fan of cured meat since in the process of making it, nutrition is lost.  The entire matter of the relationship between nutrition and nitrogen is introduced by this statement.  Unfortunately, the subject is of such a nature that, again Jeppe said that we will deal with this over the next two weeks.  For the time being, we take Jeppe at his word of such a relationship (nitrogen and nutrition).

Without looking too much into the subject, my suspicion is that this has to do with the meat juices that are lost in dry curing.  I also suspect that in the loss of meat juices, nitrogen is lost which explains the loss of nutrition, if indeed the relationship between the two is linear.  The new Irish system largely overcomes the loss of meat juices by filling the tank with liquid brine and placing the meat inside it.

This means that pressure is created around the meat with brine wanting to draw into the meat instead of drawing the albumen (protein-rich protein) out of the meat.  If the meat is not placed in liquid brine, as is done in dry curing where the meat is only rubbed with salt, in the mild curing technique, brine seeps into the meat as opposed to albumen (meat juices) being drawn out of it. In mild curing, no albumen is lost.

For the most part, dry curing is practiced with an accompanying loss of nutrition. At a time when most families across the world can not afford to eat meat more than two days a week and where most children go to bed hungry, at least a couple of times a week any loss of nutrition is a problem in any food. In the current world context, Dr. Polenske believes the most important consideration in evaluating methods of preservation is its effect on the nutritional value of the preserved food. He is obviously not very familiar with the Irish mild cure and in his work, he mainly considered dry curing.  His observations about the formation of nitrites are, however, volcanic!

The Polenski Experiment

Dr. Polenski designed an experiment to study just how much nutrition is lost.  The brine he prepared was a combination of salt, sugar, and saltpeter.  (5)  He put this in three jars with three pieces of meat which he sealed and opened again after 3 weeks, 3 months and 6 months respectively.  When he tested for nitrite, he unexpectedly found it in the brine and the meat, despite the fact that he did not add any. (6)

The Foundational work of Ulysse Gayon and Gabriel Dupetit

Dr. Polenske told Jeppe that he was not really surprised to find nitrite in the brine since he knew that saltpeter is a compound of potassium or sodium nitrate.  Nine years earlier a drama unfolded with a discovery by French scientists of bacteria that changes nitrate into nitrite and further into nitric oxide.  What this means is that certain bacteria, under certain conditions is able to remove one oxygen molecule from nitrate (codecogseqn-2) to form nitrite (codecogseqn-5).  It is further able to remove another oxygen atom from the nitrite (codecogseqn-5) to form Nitric Oxide (NO).  Thus, it is clear that the conditions that favours such a removal or “reduction” as it became known of nitrate to nitrite must exist in curing brines and must occur in the meat.

In 1882 a team of researchers, Ulysse Gayon from the French commune or town, as we call it, Bouëx in Charente and his 22-year-old collaborator, Gabriel Dupetit, from the town of Auch, Gers, coined the term denitrifying bacteria.  This formidable research team went on to make a number of very important discoveries about denitrifying bacteria. (7)

Nitrification starts with nitrogen gas which is one of the most abundant gasses in our atmosphere and through the nitrification process, bacteria create more complex compounds such as nitrate (codecogseqn-2).  An example of nitrification is ammonia (codecogseqn-7) which is changed into nitrite (codecogseqn-5) and finally into nitrate (codecogseqn-2) which serves as the nutritional source for plants.

Denitrification is the reverse where a more complex molecule is broken down to the point where it ends up with a simple molecule like nitric oxide (NO) or pure nitrogen gas (codecogseqn-6).  Denitrification is, therefore, the reverse of nitrification.  This time it starts with a complex compound of nitrate (codecogseqn-2)  which is changed into nitrite  (codecogseqn-5), into nitric oxide (NO), into nitrous oxide (codecogseqn-8) and finally back into nitrogen gas or molecular nitrogen (codecogseqn-6).  Note the gain or loss of the oxygen atom in both processes.

The Mentorship of Louis Pasteur

Louis Pasteur, the renowned French chemist, and microbiologist urged Gayon to follow what happens with the oxygen of the nitrite utilised in the process of denitrification.  They heeded his advice paid close attention to this.  They conclusively refuted an old notion that nitrate was reduced through chemical means by hydrogen, generated during fermentation.  As to the purpose of the loss of oxygen they believed that the bacteria used the oxygen from nitrogen for the combustion of organic matter to generate carbon dioxide (CO2). (8)

Based on their very thorough work, Dr. Polenske believes that nitrite is present through this process of denitrification of nitrate by bacteria.  He expects there to be much public concern following his discovery.  (9)

Jeppe and the Main Point

Jeppe was now becoming particularly excited. “Eben, Minette!” he said and put his hands around our shoulders. “In dry curing, we start with nitrate. Sodium or potassium or calcium or magnesium nitrate, depending on where you harvest the nitrate from. Nitrogen and THREE oxygen atoms.  We mix it into salt and rub it on the meat to cure in dry curing. What is happening?”

I told him that the nitrate will be turned into nitrite by bacteria. “Yes, yes, yes!” He said impatiently. “But what else? What do you see?” Still, I had no clue what he was talking about.

“Time!” Jeppe exclaimed, “It will take time!  Bacteria are living organisms and it will take time to achieve the reduction of the nitrate.  Think about fermentation – it takes time!”

“What is the faster process? Dry curing or mild curing”, he asked.

That one I gladly knew. “Mild curing!” “Correct!”, he exclaimed. “Correct!” “But why?”

Suddenly Minette and I saw what he was driving at! She answered, “The time it takes the bacteria to convert the nitrate to nitrite . . .” “And what?”, he spurred her on. “What does this points to?” “What is doing the curing?'”

I suddenly saw it and a bolt of energy hit me. “It is the nitrite doing the curing and not the nitrate!” “The time difference between the old system of dry curing using nitrates and the new system which re-uses old brine is that in the old brine, the nitrate has been converted to nitrite! This is the power of the old brine! This is why it is so much faster!”

His secretary walked in at that moment announcing that his next appointment is there. “Oh, let him wait”, Uncle Jeppe exclaimed! “”Get us coffee! There is some hope for South Africa after all!” He gave me an enthusiastic slap on my back!

“Exactly!”

“Exactly!”

He walked around his desk and sat down. “I did not discuss this with Polenski but I saw it immediately! If I told him the entire Germany would convert to mild curing and Denmark’s competitive edge would be lost.  I sat there thinking of what Andreas told me. That I will find that my greatest discovery won’t be the mild curing process, but why it works the way it works. The “why?” And “how?” of curing. I was exhilarated!

Tristan, I know you love biology and the natural sciences. This is why I address this mail to you and I have no worry that I become too technical. The reaction sequence and mode are beautiful. I can honestly say that I am completely in love with the natural world and my fellow explorer in all this is Minette!

I now want to know every element present in the brine, and its exact function. What is the chemistry in the meat itself?  How does curing happen? When we know this, we will be in a position to manipulate the process and improve it.

A Bigger Point

Jeppe had something very important to share with Minette and I that flows the discovery of denitrifying bacteria.  Right at the start of this journey, I realised that what we are discovering is much more than simply learning how to cure bacon.  This journey back to the lands of my forefathers is a big deal! In a way, it was already an end in itself for me. History and context if of enormous importance. Our lives are never in isolation. We come from the soil of Denmark and the fact that it is here where we find the answers is hugely important to me!

Bacon is in the center of scientific research of Europe, America, and the United Kingdom, and the combined scientific focus of these countries are directed at unlocking its secrets which are bound up with that of agriculture and superior technology in warfare.  Besides these, there are many human stories that are part of the story of bacon.  Real people who each contribute small parts of a very large jigsaw puzzle that is coming together.  They teach us about life. We do not live in isolation, my son! What I am recounting is not fiction! I tell you real stories of real people! Jeppe taught us that life is more than bacon.  The journey of discovering its secrets are far more important than just the factory we will one day set up.

Within the same year of publishing a major paper on denitrifying bacteria by Gabriel and Ulysse, tragedy struck.  The young Gabriel Dupetit ended his own life.  He traveled to the Italian city of Savano and booked in at the Albergo Svizzero under the false name, Gaston Denault.  Overcome by anxiety of all sorts, on the evening of 28 December 1886, he injected poison into himself.  He was discovered, barely alive and despite many efforts to save his life, he passed away on the morning of the 29th.  He left a note in French explaining some of his worries.  The use of the false name was done to hide his identity and spare his parents’ embarrassment.  Both Minette and I sat silently as Jeppe told us what had happened.

Minette had to fight away the tears.  We are both humbled and saddened by this story.  His work directly contributes to our quest of understanding bacon and still, his death reminds me that our lives are bigger than our goals and dreams.  Despite our ambitions, we must pay attention to each sunset and sunrise and never make the mistake of thinking that achieving goals define us.  Francois Blanc got it right.  He found fulfillment in small things, despite his success.  His success does not define him.  He finds the greatest fulfillment in the ordinary in life.  In this, bacon and life become inseparable and I am never sure when I stop learning about the one and start learning about the other.

Maybe, I wonder, the biggest and most important act of his life was the drives he took through the countryside with his wife. His relationship with his sons and the evenings that Uncle Jeppe and Dr. Polenski spent with him.  Uncle Jeppe told me how much he enjoys it!

We see glimmers of the full mechanisms of curing brought about by microorganisms, nitrate, nitrite, salt, sugar, and spices.  I would love to know much more to take back to Cape Town a curing method where curing can be done in a shorter time than 19 days, yielding a product that tastes just as exquisite as Irish or Danish Mild Cured bacon.  I have many friends in the curing industry who would rather cut off their one hand than do anything quickly.  This is a discussion for another day.  There are those who believe that in order to cure bacon in the “right” way, one needs time, but my quest is centered around understanding a process that fits with a bacon curing plant that is capable of supplying bacon in large quantities.  We do not envisage setting up something small in Cape Town.

Even so, with all the excitement from our quest, never forget the priority of each sunset. Knowing that we are but small parts of a very big whole. That our highest achievements will be measured in whom we loved and how content we were with whatever life offers us. My heart goes out to that young man and his parents! Imagine his final moments – alone, in a foreign land!

With these, my dear son, it is time for me to go. Know that, no matter what, my love for you and your sister is eternal. You guys will be my last thought when I die. The vision of you and my dear Minette! You guys are my entire world and as certain as I write these words today, one day you will read it and I will be gone. Know that my life was not just about bacon, but like Gabriel Dupetit, it is also about the art of living! Imitate me, my son! Live!!

Be well, my boy!  Take care of Lauren!

Lots of love from Denmark,

Your Dad.


green-previous green-home-icon green-next


(c) eben van tonder

Bacon & the art of living” in bookform

Stay in touch

Like our Facebook page and see the next post. Like, share, comment, contribute!

Bacon and the art of living

Promote your Page too


Notes:

(1)  “St” is the abbreviation for “stone.”   Until as recent as the Second World War, the Smithfield market in London used the 8 lb to a stone measurement. (hansard.millbanksystems)

The stone weight differed according to the commodity weighed.  Animals were weighed in 14 lb to a stone before they were slaughtered and once slaughtered, the carcass and meat would be sold in 8 lb to a stone measure.  Spices were also sold in 8 lb to a stone weights.  (Newman, 1954)

(2)  A survey was done in the US in the 1950’s to determine the most common brine mix used for curing bacon at the time. (Dunker and Hankins, 1951: 6) Even though it is 60 years after this letter was presumably written, I include it since methods and formulations in those days seemed to have a longevity that easily would have remained all those years later.  The survey was also done among farmers, in an environment where innovation are notoriously slow.

(3)  How salty was this bacon in reality?  The recipe is used by most US farmers by the 1950’s was 10 lb (4.54kg) salt, 3 lb (1.36kg) of brown suger, 6 ounces (170g) of black pepper and 3 ounces (85g) of saltpeter.  10 pounds (4.54kg) of this mixture per 100 pounds (45.36kg) of meat.

The total weight of dry spices is therefore 6.07kg of which salt is 74% or  3.4kg.  This was applied at a ratio of 3.4kg salt per 45kg of meat or 1 kg salt per 13 kg of meat.  Not all salt was absorbed into the meat, but the meat was regularly re-salted over the curing period which means that this ratio would be applied many times over before curing was complete.  Compare this with the salt ratio targeted by us in 2016 of 25g per 1kg final product, this means that the bacon made with this recipe would be extremely salty, irrespective of the use of sugar to reduce the salty taste.  The bacon would have to be soaked in water first to draw out some of the excess salt, before consumed.

(4)  Eduard Polenske (1849-1911) was born in Ratzebuhr, Neustettin, Pommern, Germany on 27 Aug 1849 to Samuel G Polenski and Rosina Schultz. Eduard Reinhold Polenski married to Möller. He passed away in 1911 in Berlin, Germany. (Ancestry.  Polenske)

The Imperial Health Office was established on 16 July 1876 in Berlin,focussing on the medical and veterinary industry. At first it was a division of the Reich Chancellery and from 1879, fell under the Ministry of the Interior. In 1879, the “Law concerning the marketing of food, luxury foods and commodities” was adopted, and the Imperial Health Office was tasked with the responsible for monitoring compliance with it. Established in 1900, the Reichsgesundheitsrat supported the Imperial Health Office in its tasks. (Wikipedia. Kaiserliches Gesundheitsamt)

(5)  Brine is a solution of salt in water.

(6)  Qualitative and quantitative techniques for measuring nitrite and nitrates in food has been developed in the late 1800’s.  (Deacon, M;  Rice, T;  Summerhayes, C,  2001: 235, 236).  The earliest test for nitrites is probably the Griess test.  This is a chemical analysis test which detects the presence of organic nitrite compounds. The Griess reagent relies on a diazotization reaction which was first described in 1858 by Peter Griess.

Schaus and others puts the year of the discovery by Griess as 1879.  According to him,  Griess, a German Chemist used sulfanilic acid as a reagent together with α-naphthylamine in dilute sulfuric acid.  In his first publication Griess reported the occurrence of a positive nitrite reaction with human saliva, whereas negative reactions  were consistently obtained with freshly voided urine specimen from normal individuals.   (Schaus, R; M.D. 1956:  528)

(7)   Gayon and Dupetit’s discoveries include the following:

  • they demonstrated the “antagonistic effect of heat as well as oxygen on the process.”
  • “They also showed that individual organic compounds such as sugars, oils, and alcohols could supplant complex organic materials and serve as reductants for nitrate.”
  •  In 1886 they reported on “the isolation in pure culture of two strains of denitrifying bacteria.”

(Payne, W. J..  1986)

(8)  In reality, the key to understanding the function of the utalization of the oxygen atom is understanding cell respiration.  The purpose of cell respiration is the formation of ATP.  The organism needs nutrients for respiration which is obtained from sugar, amino acids, fatty acids and an oxidizing agent (electron acceptor), oxygen (codecogseqn-9).  Now, in environments where oxygen is depleted (where the rate of oxygen consumption is higher than oxygen supply, the bacteria respire nitrate.  The nitrate serves the purpose of the terminal electron acceptor, a function which is better performed by molecular oxygen, if it is available.  It is not only nitrite that is used by microorganisms in respiration when molecular oxygen is depleted.  Other electron acceptors are sulfate, iron and manganese oxides.

(9)  Dr Ed Polenski’s findings has been published in “Arbeiten aus dem Kaiserlichen Gesundheitsamte , 7. Band, Springer, Berlin 1891, S. 471–474” (http://books.google.co.za/books?id=R_YAAAAAYAAJ&pg=PA471&redir_esc=y)

References

Asheville Citizen Times (Asheville, North Carolina), 20 August 1895.  All information on Francois Blanc was from an article on page 3.

Dunker, CF and Hankins OG.  October 1951.  A survey of farm curing methods.  Circular 894. US Department of agriculture

Jones, Osman, 1933, Paper, Nitrite in cured meats, F.I.C., Analyst.

Drs. Keeton, J. T.;   Osburn, W. N.;  Hardin, M. D.;  2009.  Nathan S. Bryan3 .  A National Survey of Nitrite/ Nitrate concentration in cured meat products and non-meat foods available in retail.  Nutrition and Food Science Department, Department of Animal Science, Texas A&M, University, College Station, TX 77843; Institute of Molecular Medicine, University of Texas, Houston Health Science Center, Houston, TX 77030.

Payne, W. J..  1986.  1986: Centenary of the Isolation of Denitrifying Bacteria.

Smith, Edward.  1876. Foods. D. Appleton and Company, New York.

Schaus, R; M.D. 1956.  GRIESS’ NITRITE TEST IN DIAGNOSIS OF URINARY INFECTION,    Journal of the American Medical Association.

http://hansard.millbanksystems.com/commons/1938/mar/01/meat-prices

Picture References:

A cargo ship at the Cape:  https://en.wikipedia.org/wiki/Economy_of_the_Western_Cape

Chapter 08.04 The Saltpeter Letter

Bacon & the Art of Living 1

Introduction to Bacon & the Art of Living

The quest to understand how great bacon is made takes me around the world and through epic adventures. I tell the story by changing the setting from the 2000s to the late 1800s when much of the technology behind bacon curing was unraveled. I weave into the mix beautiful stories of Cape Town and use mostly my family as the other characters besides me and Oscar and Uncle Jeppe from Denmark, a good friend and someone to whom I owe much gratitude! A man who knows bacon! Most other characters have a real basis in history and I describe actual events and personal experiences set in a different historical context.

The cast I use to mould the story into is letters I wrote home during my travels.


The Saltpeter Letter

June 1891

Dear Children,

The days grow ever more light and joyful as summer approaches. The cornerstone of meat curing is Saltpeter and understanding its composition and function in meat is the starting point to unravel the mysteries of bacon.  Curing is a separate discipline to fermentation such as is used in making salamis and drying, such as is used in biltong.  Saltpeter is what cures meat.  It is the overarching and controlling mechanism in bacon production.  My mind drifts back to Cape Town when I see the Danes going about their business of being Danish! Similar to saltpeter in bacon there are principles that make this great nation who they are.  Traditionally, their work ethic, their view of the equality of all humans, their model of cooperation are not just good ideas.  It is fundamental to their existence as people.   We have similar beliefs that make us who we are as an emerging nation.  Certainly, religion shaped our society in South Africa.  I remember the last church service at the Groote Kerk in Cape Town before I left on my grand quest.

It is in the same church where my mom and dad were married and where I was christened as a baby. As staunch Calvinists, much of life revolved around church and the Groote Kerk was my second home.

1910 photograph – sent to Schalk LE ROUX from Marthinus van Bart Photographer: Unknown

It was the first Christian place of worship in South Africa. The oldest church structure on this piece of land dates back to 1678, 26 years after the Dutch landed to set up their refreshment station. The current building was built by the German architect Herman Schuette in 1841. Much of the old church, including the steeple, was retained in Schuette’s new design. It is situated right next to parliament. The last Sunday before I left for Europe, my kleinneef preached.

He is a gentle man with a large pastorly heart.  His theology is progressive and his faith sincere.  My mom and dad are close to Oom Giel and his Brother, Oom Sybrand. They are my mom’s cousins.

That particular morning his text was Ephesians 5. I remember hearing the horse carts rattling by in the street outside church down Adderly street. As always, there was energy in the air as people arrived. Oom Jacobus and the Graaff kids who lived with him sat in their own allocated seating. He hung his hat on the rack provided for every congregant.

Oom Giel’s thesis was  “Live as people of the light.”  Here, at the Groote Kerk, the people who started the Cape Colony worshiped and receives their spiritual direction.  Oom Giel stressed that we receive the light, but he was humble about what that means. As a theologian, he was ahead of his time.  “A day will come when we realise that the church does not have all the answers.  One day the church will no longer be able to scare non-believers into faith by the threat of hell.  The light we received is that we are in God’s hands. Its a way of life.”

Deep-seated Calvinism shaped the colony. From the straight roads and square corners on neat houses to straight orchards. They believed God was in the first place viewing life as a geometer and this shaped everything they did. The Groote Kerk is the spiritual spring of the Colony.

It was not only an obsession with geometry that bewitched those who drank from the well and a misplaced superiority complex over all of God’s world, but good was also distilled from these waters. A friend from further up in Africa pointed it out to me one day when he visited Cape Town and I took him around to see the beautiful city. A mindset prevails among its inhabitants that says, we are here and we can thrive! We can get many things from Europe, but by golly, we can do it ourselves! What we can do is any time as good as the best we can get from Europe! With discipline and diligence, inherent to the Christian gospel, we approach every task set before us! In straight lines!  This is exactly the reason why I am in Denmark.  An inherent belief that whatever the Europeans can do, we can do better!

Apart from this, people from southern Africa mind our own business and desire a quiet life. We want to live in light of our gospel.  That is how Oom Jacobus, another one of my mentors, approaches life. How he cut his meat and wrap it for customers; cure the bacon; grew his spices in his enormous garden at his home in Woodstock, these are all outworkings of his fundamental view of life.

As Oom Giel lead us in reciting the Apostolic Creed, I wondered, how many times through the years was it recited in this Church!  The settlers, for all their faults – many of them were bound by this confession and tried to live true to its articles.

Oom Giel broke the bread. It is communion with the body of Christ. And so is the wine, union with the blood of Christ.  Our rituals and confessions link us to countless generations. Past and present and from these deeply held beliefs we became. I am in Denmark to learn the art of meat curing, like Uncle Jacobus.  The last Sunday in Cape Town, I listened to Oom Giel with Uncle Jacobus and David de Villiers Graaff in attendance.  What a special day!

Now I am learning another gospel in Denmark. The art of curing bacon and the salt we use is saltpeter.  That day at the Groote Kerk Minette was also there.  We sat together and shared communion.  Today it is Sunday and again, Minette is here with me.  It is a surprise I never expected!  She arrived last weekend and Uncle Jeppe returned from Liverpool during the week.  This morning she joined me at his bacon factory.

Uncle Jeppe reminded me of Oom Giel when he leaned forward in his chair pressing down on his desk. Passion for the subject. Authoritative. Uncle Jeppe must have been quite a ladies man in his day!  He made Minette feel very welcome and gave her the grand tour of the factory.  At lunchtime, I was already sitting in his office waiting for them.

They walked in while Uncle Jeppe and Minette were laughing at a joke.  They do not share the joke with me.  “So, today we go back to a time when saltpeter was still a mysterious compound,” Uncle Jeppe said.  Minette took the seat beside me.  Uncle Jeppe walked to behind his desk where he took a notebook out of a drawer.  He does not sit in his cair but walks around the desk and sits on it facing us.  “The story of saltpeter goes back, ions of time!”

Minette interjected that she still remembers exactly how it is formed.  She looks at me when she recounts it.  “Nitrogen Dioxide (NO2), formed in the atmosphere when nitrogen reacts with ozone, reacts with raindrops which is water or H2O.  The two oxygen atoms of nitrogen dioxide combine with the one from water to form 3 oxygen atoms bound together.  There is now one nitrogen atom bound to three oxygen atoms to give us NO3 or nitrate.  There is still one hydrogen atom left and it combines with the nitrate to form nitric acid (HNO3).  Nitric acid falls to earth and enters the soil and serves as nutrients for plants.”

“In the ground,” I finish her thought, “it reacts with a salt such as potassium, calcium or sodium to form potassium nitrate, calcium nitrate or sodium nitrate which is taken up as plant food.”  I smiled at her.  “You remember well!”

Uncle Jeppe smiled.  He almost got lost in the moment.  He pulled himself back to reality and opened his notebook.  He balanced the open book in his one hand.  He is a meticulous note keeper,  something that I learned from him.  He keeps notes written in his neat cursive handwriting. One can see that he values every sentence he writes!  I now have my own notebook and on Sundays, I review the work e covered that week and I write what I learned or saw in my letters to you guys.

Saltpeter is one of the magical salts of antiquity. For most of human history, we did not know what saltpeter was,” Jeppe preached on. Saltpeter was used in ancient Asia and in Europe to cool beverages and to ice foods. There are reports dating back to the 1500s about it. Without any doubt, it has been known for millennia before it was reported on in writing. (Reasbeck, M:  4)

From antiquity the ancient cured their meat with it and enjoyed its reddening effect, it’s preserving power and the amazing taste that it gives.  The earliest references to it go back to people in Mesopotamia from the Bronze Age who used it in the same way as the Romans. The characteristic flavor it imparts to meat was reported on in 1835 (Drs. Keeton, et al;  2009) but there can be little doubt that it was noticed since many thousands of years before the 1800s.

The Chinese worked out how to make explosives, using the power of saltpeter. There is even a record of gunpowder being used in India as early as 1300 BCE, probably introduced by the Mongols. (Cressy, David, 2013:  12)  People started using it as a fertilizer when overuse of the land required us to replenish the nutrients in the soil.”

It was widely known traded in markets in China, India, the Middle East, North Africa, Europe, and England. It was its use by the military in gunpowder and its pharmaceutical use made it generally available in Europe from the 1700s. This meant its usage as curing agent with salt increased and by 1750 its use was universal in curing mixes in Europe and England. Most recipe books from that time prescribed it as a curing agent. (Drs Keeton, et al, 2009)

Despite its wide use by 1750, people still could not work out if saltpeter occurred naturally or was it something that had to be made by humans.   When they managed to get hold of it, they wondered how to take the impurities out of the salt which gave inconsistent curing results and was no good in gunpowder. People were baffled by its power.

“Some speculated that it contained the Spiritus Mundi, the ‘nitrous universal spirit’ that could unlock the nature of the universe!”

Jeppe quoted Peter Whitehorney, the Elizabethan theorist who wrote in the 1500s.  He said about saltpeter, “I cannot tell how to be resolved, to say what thing properly it is except it seemeth it hath the sovereignty and quality of every element”.

Paracelsus, the founder of toxicology who lived in the late 1400s and early 1500s said that “saltpeter is a mythical as well as chemical substance with occult as well as material connections.” The people of his day saw  “a vital generative principle in saltpeter, ‘a notable mystery the which, albeit it be taken from the earth, yet it may lift up our eyes to heaven’”   (Cressy, David, 2013:  12)

Jeppe got up and settled in on his large office chair.  He leaned back as he continued to read.  “From the 1400s to the late 1800s we have records of almost every scientist probing and testing it to determine its properties. No doubt, ancient scientists and stone age chemists did the same for many thousands of years and in a way, it is the fascination with enigmatic salts that precipitated the science of chemistry.”

“Saltpeter encompassed the “miraculum mundi”, the “material universalis” through which ‘our very lives and spirits were preserved.  Its threefold nature evoked ‘that incomprehensible mystery of … the divine trinity,’ quoting Thomas Timme who wrote in 1605, in his translation of the Paracelsian Joseph Duchesne.  “Francis Bacon, Lord Chancellor and Privy Councillor under James I, described saltpeter as the energizing “spirit of the earth.””   (Cressy, David, 2013:  14)

“Robert Boyle who did experiments trying to understand saltpeter found it, ‘the most catholic of salts, a most puzzling concrete, vegetable, animal, and even mineral, both acid and alkaline, and partly fixed and partly volatile.  The knowledge of it may be very conducive to the discovery of several other bodies, and to the improvement of diverse parts of natural philosophy” (Cressy, David, 2013:  14)

I could tell that Minette loved it!  We were both riveted to every word!  When I saw her interest in the subject, I realised that in Minette I, not only have a friend and a beautiful friend at that, but I have a partner to explore life with me.  She not only laves nature and exploring our natural universe, but she also has an amazingly inquisitive mind in all matters technical.  “Cheepes, I thought, what a woman!”

Tristan, Lauren, I was completely dumbstruck!  On the one hand was the realisation that there are bonds between Minette and me that are stronger than simply a friendship.  On the other hand, there is the realisation that the salt that I have been using to cure pork for most of my life is one f the greatest salts from antiquity!  I used it with my Dad and Oupa Eben on the farm every time we cured Kolbroek meat.  Here in Denmark, I work with it every day!  I was overcome by a feeling of deep respect for this chemical compound that we readily use. Even now that we know saltpeter is a salt attached to an acid in the form of one nitrogen atom and three oxygen atoms (CaNO3), its history is remarkable! I stepped onto a stage where a Shakespearean drama has been acted out and I became part of a grand history.  I would never again hold it in my hand and think of it in the same way!  Saltpeter is far more than just its chemical composition!  Contained in its essence is the spirit of every man and woman who ever looked at it to unravel its secrets for thousands of years.

I recall Oom Giel’s sermon.”Live as people of the light. Be true to your most basic quality.” For millennia, saltpeter mesmerized us long before its essential nature could be explained. Oom Giel’s message was the same. Mesmerize others with your essential Christian character. There should be no need for debate or discussion.

It is late in the Østergaard family home. Andreas, his dad, mom, Minette and I were discussing Uncle Jeppe’s lessons from today after supper. They told us about a museum dedicated to geology in Copenhagen and they are planning to take us there next weekend where I intend exploring the question of the origins of saltpeter more closely. The question of who were the first people to change the use of saltpeter into an art? Who harnassed its use and who established what is now the collective knowledge of saltpeter into an art.  The art of curing meats.  Who were the custodians of its power for millions of human history?  I intend exploring this question with the good people from the University next weekend!

Both Minette and I are insanely excited. The house is now quiet with everybody asleep except me, wrapping the day up with my customary letter to you guys.  I love you more than life itself and cant wait to share what we learn from the University next weekend.

Lots of love,

Dad


green-previous  green-home-icon    green-next


(c) eben van tonder

Bacon & the art of living” in bookform

Stay in touch

Like our Facebook page and see the next post. Like, share, comment, contribute!

Bacon and the art of living

Promote your Page too


References

Cressy, D.  2013.  Saltpeter.  Oxford University Press.

Cressy, D.  Saltpetre, State Security, and Vexation in Early Modern England.  The Ohio State University

Crookes, W.  1868/ 69.The Chemical News and Journal of Physical Science, Volume 3.  W A Townsend & Adams.

Deacon, M;  Rice, T;  Summerhayes, C.  2001. Understanding the Oceans: A Century of Ocean Exploration,   UCL Press.

Dunker, CF and Hankins OG.  October 1951.  A survey of farm curing methods.  Circular 894. US Department of agriculture

Frey, James W.   2009.  The Historian.  The Indian Saltpeter Trade, the Military Revolution and the Rise of Britain as a Global Superpower.   Blackwell Publishing.

Jones, Osman, 1933, Paper, Nitrite in cured meats, F.I.C., Analyst.

Drs. Keeton, J. T.;   Osburn, W. N.;  Hardin, M. D.;  2009.  Nathan S. Bryan3 .  A National Survey of Nitrite/ Nitrate concentration in cured meat products and non-meat foods available in retail.  Nutrition and Food Science Department, Department of Animal Science, Texas A&M, University, College Station, TX 77843; Institute of Molecular Medicine, University of Texas, Houston Health Science Center, Houston, TX 77030.

Kocher, AnnMarie and Loscalzo,  Joseph. 2011.  Nitrite and Nitrate in Human Health and Disease. Springer Science and Business Media LLC.

Lady Avelyn Wexcombe of Great Bedwyn, Barony of Skraeling Althing
(Melanie Reasbeck), Reviving the Use of Saltpetre for Refrigeration: a Period Technique.

Mauskopf, MSH.  1995.  Lavoisier and the improvement of gunpowder production/Lavoisier et l’amélioration de la production de poudre.  Revue d’histoire des sciences

Newman, L. F.. 1954.  Folklore. Folklore Enterprises Ltd.

Pegg, BR and Shahidi, F. 2000. Nitrite curing of meat. Food and Nutrition Press, Inc.

Shenango Valley News (Greenville, Pensylvania), 26 January 1883

Smith, Edward.  1876. Foods. D. Appleton and Company, New York.

Schaus, R; M.D. 1956.  GRIESS’ NITRITE TEST IN DIAGNOSIS OF URINARY INFECTION,    Journal of the American Medical Association.

http://hansard.millbanksystems.com/commons/1938/mar/01/meat-prices

Photo credits:

The 1910 photo of the Groote Kerk, from https://www.artefacts.co.za/main/Buildings/bldg_images.php?bldgid=6457#25001

All other photos by Eben van Tonder

Chapter 08.03 Minette, the Cape Slaves, the Witels and Nitrogen

Bacon & the Art of Living 1

Introduction to Bacon & the Art of Living

The quest to understand how great bacon is made takes me around the world and through epic adventures. I tell the story by changing the setting from the 2000s to the late 1800s when much of the technology behind bacon curing was unraveled. I weave into the mix beautiful stories of Cape Town and use mostly my family as the other characters besides me and Oscar and Uncle Jeppe from Denmark, a good friend and someone to whom I owe much gratitude! A man who knows bacon! Most other characters have a real basis in history and I describe actual events and personal experiences set in a different historical context.

The cast I use to mould the story into is letters I wrote home during my travels.


Minette, the Cape Slaves, the Witels and Nitrogen

Copenhagen, May 1891

Last week Andreas tells me that we will not be doing anything the following Saturday.  Uncle Jeppe visits Liverpool once a year.  He is returning to Copenhagen and Andreas and his dad asked me to welcome him to the harbour.  I am always delighted to spend time with the old man!  I was looking forward to the train ride into the city with him.  I was bright and early at the harbour and when the English steamer docked, I eagerly looked through the crowd to see him.

Minette

The crowd was milling around with people greeting and porters busily hauling luggage to waiting horse carts and some, off to board the train. I scanned the milling crowd and my eye caught sight of a beautiful young lady, a bit younger than me.  She looked a lost with no porter by her side, carrying two leather travel bags, too heavy for her.  My glance passed over her, looking for Uncle Jeppe.  My gaze almost immediately returned to her.  There were two reasons for this.   She was beautiful and there was something familiar about her!  She looked up and right at me and suddenly I recognized her.  “Minette!!”

My heart jumped with excitement!  At the same time as I recognised her, she saw me and a broad smile graced her beautiful face!  “Minette!” I blurted out!  The last person on earth I was expecting and the one person that I most dearly want to see!  “Minette!” I said again, this time a lot softer as I riched her after a few large strides to get to her.  “Minette, what on earth!?” I said again.  She dropped her bags and we embraced!  “I almost did not recognise you with your hat and your nice dress!

“What are you doing here?”  “Where are you staying?”  “Come,” I said and picked her bags up.  “I’m here to visit you,” she said and started walking with me towards the train. I was still baffled. “Two months ago Andreas wrote to me.  He invited me to visit and surprise you.”  I realised that it must have been after Andreas and my long drinking session in Copenhagen that I write to you in my last letter that he hatched his plans.  It appears that he took his lead from the many times I spoke about you in all my adventures.

Suddenly I remember that I was there to welcome Uncle Jeppe! She saw the panic in my eyes as I started looking around again.  “Uncle Jeppe is only arriving next week,” she helps me out of my misery.  “He is still in Liverpool.  The whole thing was a ruse to get you to the harbour!”

I have never been this excited to see anybody!  The last time I saw her we were sitting in Pennys Cave on Table Mountain with our friends.  Minette and I love exploring the mountains and valleys around Cape Town and we would do this as often as we get an opportunity.

Drosters Gat

It was on one of our hikes that we discovered the cave on Kogel Bay, Dappa se Gat, where I think the slaves lived who took in the pigs from the Colenbrook which became known as the Kolbroek pigs.  We discovered the Cave when we hiked from Hermanus to Cape Town, one year.  We started at Hangklip at Pringle Bay close to Hermanus where my younger brother, Elmar, Juanita and their two kids live.

I started reading Alexander Von Humboldt’s work when I was still a small boy and was captivated by the destruction brought about by European colonists.  In my imagination, I would accompany Von Humboldt on his travels across South America and the Russian Steppe.  I got intensely interested in the physiology of the human and animal body when I read about his work with Guthrie.  The sense of adventure and the need to explore partly come from stories such as his.

Across the decades that separate our lives, Von Humboldt mentored me.  If I had enough money to buy a book I wanted, but not enough for food for the day, I would buy the book.  Choices between using my savings from my Transport work to buy a house in Cape Town or to either travel to Europe to learn how to make bacon or go on an expedition to the Magaliesberg Mountains always ended up on whatever would teach me the most and be the greatest adventure.  Buying a house never was a priority!

During my time as a Transport Rider across the vast open spaces of Southern Africa, I witnessed the destruction that people bring to nature and each other first hand.  I visited old Tswanruins at the Vaal River between Paryd and Potchefstroom and at Hartebeespoort.  I hiked through these massive Tswana and Sotho cities at the Suikerbosrand and in Johannesburg on the farm of Sarel Marais. The cities of the Tswana and the Sotho were decimated by  Mzilikazi Khumalo, a Southern African king who founded the Mthwakazi Kingdom now known as Matabeleland.  It was precisely because Minette and I shared these priorities and values that I was drawn to her.  Well, apart from her good looks and inquisitive personality.

The existence of slavery and the wholesale destruction of our natural world went hand in hand.  A period followed where I had an intense interest in slavery and the knowledge I gained allowed me to understand our land better.   The Kolbroek pigs are an excellent example.

Minette and I knew there was another famous cave where a community of runaway slaves lived.  Between Pringle Bay and Rooiels, much closer to the water’s edge, legend has it that these poor people discovered a cave that can house them and hide them from the slave masters.  The entrance is very narrow and like Dappa se Gat, one can enter it only during low tide.  It is accessible from the sea.  It became known as Drostres gat (cave). From Rooi Els to Kogel Bay is a short distance.

We rode out to Pringle Bay at Cape Hangklip.  It is always good to rely on local knowledge when looking for these things.  Locals directed us to a restaurant and bar called Miems.  The owners are Morris and Kerneels.  Morris, a tall and well-built man, is a trained geologist who worked in Johannesburg mines for many years.  Kerneels, his partner and he traveled to Ireland a few years ago in a stunning reversal of where people go to find their fortunes.  Where most Europeans are hoping for the new world to provide a living, Morris and Kirneels went to Ireland where they worked till they saved enough to start Miems at Cape Hangklip.  He too read the account of Green about Drostersgate (Drosters cave) between Pringle Bay and Rooiels.

An old farmer wrote that the Gat (Cave) can only be accessed at low tide and climbing down down a precipice with a rope. A neighbor and he went in with candles for about eighty yards. He remembers that it was dark and damp and one could see bones of large game animals and cattle still scattered across the cave floor. They also found trunks of melkhout trees, used to make fire to roast the meat.  He wrote that there are graves of “strandlopers” (scavengers) around the general location of the cave.  Morris has been to the exact location more than once and says that he is not able to get into the cave.   The opening is too small for such a big man.  He tried to access it from the sea without any success.   It does not surprise me that the salves managed to get into areas where he could not. By all accounts, they were gaunt and small.

Minette and I looked for it and when we could not find it, we returned to Miems for another few pints.  Back at the bar that evening, it seemed as if everybody had a cave story where runaway slaves hid out.

It is immediately obvious that finding food would have been a massive challenge.  There are accounts of such slaves wandering around on Table Mountain only to eventually returned to Cape Town and hand themselves over to authorities to face the cruelest punishment rather than dying of starvation.  It is this reality that made the feat of young Joshua Penny even more remarkable who stayed for an extended time period on Table Mountain.

The only place on the mountain that was regularly inhabited by these most unfortunate people was an overhang up Platteklip Gorge on Table Mountain.  There are accounts of slaves who lived up this gorge taking live cattle up.  Anyone who ever hiked up there will know that taking a cow or an ox up there must have been extremely arduous.  The cave can still be seen to this day up the oldest recorded route up Table Mountain.

The many accounts of the struggle for food of the slaves and the fact that keeping livestock was a strategy they used to sustain themselves lend tremendous credence to my theory about the fate of the Kolbroek pigs.  In the Hangklip area, there are a number of other well-known legends of runaway slaves-communities hiding away in caves.  The area is mysterious and to this day, sparsely populated.  An old man once told me, there are many ghosts in these mountains!

We hiked from Rooi Els to Kogel Bay when we first discovered Dappa se Gat.  We just passed Kogel bay and I got to the stretch of beach, strewn with round boulders, resembling cannon shot when I saw the cave.  Dappa se gat!  The cave is a couple of hundred meters deep and during high tide it is inaccessible.  I sat in front of the cave and tried to imagine what it must have been like for the runaway slaves.

My mind effortlessly wondered to the sinking of the Colebrook and the fate of the pigs that swam ashore.  So it happened that not even on Minette and my wildest adventures were we ever very far from bacon, hams, salamis, and pigs.

The Witels

Another favourate site of ours is the Witels River.  Between the Matroosberg and the Winterhoek Mountains is the town of Ceres that officially existed since 1854.  A pass was constructed called, Michells Pass which follows the route to Ceres next to the Bree River.  Where the Witels flows into the Bree River is an open “outspan” area which is clearly seen on the West bank of the river.  I am sure that the trekkers spent a couple of nights here, feeding and resting their cattle before taking on the pass.  

The first pass was built by Jan Mostert and was called Mostert’s Hoek Pass (1765).  Jan was one of the first settlers to settle on Ceres’ side of Tulbagh.  The pass was a very rugged 3kms.  The road was so bad that wagons had to be dismantled and sections crossed on foot, the cargo and the wagons strapped to the backs of oxen.

Charles Michell surveyed Mostert’s Hoek Pass in 1830 to improve it.  Andrew Geddes-Bain constructed the new pass in 1846, with the assistance of 240 convicts.  The Bree River runs all the way into the Warm Bokkeveld. The pass effectively reduced the travel time from Cape Town to Beaufort West from 20 to 12 days.  It was almost possible to do the route with a horse-drawn carriage.

dwars, bree and witels.png

On my way to Johannesburg through Kimberly, I stayed at the Winterberg Mountain Inn.  It was the main road between the Cape and Kimberley. It was formerly known as Mill & Oaks Country Inn.  The restaurant is built on the foundations of an olf wheat-mill dating from the 1800s.  It was called the Ceres Meul (Mill).  It is not known exactly when the Mill was built.  Probably in the late-1700s by the first European settlers.  The Inn is the kind of place that I prefer.  Steeped in history, enough ghosts to chase, legends to unravel, exceptional food and great company!

One of Minette’s banking clients told her about the Witsels river; that it runs down towards the Bree River from the southern Peaks of the Hex River mountains.  The best approach is through the Waaihoek Kloof.  The man who first identified the route will forever remain nameless in accordance with his own wishes. The next time I stayed at the Winterberg Mountain Inn, I asked the locals if they know the access route. They explained to me in great detail.  When I got back to Cape Town a few months later, I immediately looked Minette up at the Bank and the plan was set out for a legendary hike.

IMG_3238

One ascends a mountain and through a very precarious route, access the river.  Once you are in the river, there are very few ways out.  The cliffs are for the most part right next to the river, forcing you to either swim or jump from boulder to boulder.  At certain places, the cliffs fold over the river creating long stretches that you swim through caves, following the flow of the river.  Next to the river, there are small stretches that resemble sea sand.  It created the most amazing places to sleep.  To go up the mountain, into the Witels River and out at the Bree River takes around 5 days.  Some young people are able to cover the distance in a day provided that they don’t take anything heavy in their backpacks.  The best Minette and I did was 2 days from start to finish, but the river was very full and progress painfully slow.  The Witels river has become a spiritual pilgrimage for us and ranks as one of our most favourate routes on this bountiful earth!

One of the Witels hikes it started raining.  Rain down the Witels can be life-threatening if it rains higher up in the catchment area and the river comes down.  The force of the river carries large boulders from higher up, downstream and the force is such that if one would be in the water when this happens, chances for survival are slim to zero.  We moved our backpacks higher up the sandbank and as close to the cliff as we could get a comfortable place to lay down.  I was trying to get Minette’s mind off the raging river!

Nitrogen

I was laying under my sleeping bag.  Minette was getting her overnight spot comfortable for the night; painstakingly removing the rocks that would start to irritating her once the initial tiredness has worn off.  I asked her if she knew what air was made off.  “Oxigen and of course. . . ”  “Nitrogen!” she answered.

“Correct! It was discovered separately in 1772, by the Scottsman, Daniel Rutherford and in the early 1770s by a Swiss, Carl Scheele.  Rutherford called it “noxious air” and Scheele, “foul air.”” I replied.

I briefly explained for fear that I would bore her, “It exists as a gas and comprises of two nitrogen atoms, joined to form one gas molecule.  They are split apart by something of high energy such as a lightning strike.  This leaves the two atoms free to react with other matter floating around it.

Nitric Oxide

“One of these elements floating around in the atmosphere is oxygen.  Nitrogen reacts with oxygen and forms nitrogen monoxide (NO).  Nitrogen monoxide, a colourless gas, is an extremely important compound.  It is also called nitric oxide or nitrogen oxide.  The nitric oxide is heated from the energy from the lightning flash that created it.”

The drizzle was coming down softly.  Minette finished nesting and I got enough energy together to build a fine.  I cleared a small sandy patch at my feet and with a twig I wrote the simple chemical reaction in the sand.

N2 (g) + O2 (g)  lightning —> 2NO (g)

“There are different sources of Nitric Oxide.  Very important one which I will tell you about later.”

Nitrogen Dioxide

“As it cools down, it reacts further with the oxygen molecules around it to form nitrogen dioxide.  Nitric Oxide is one nitrogen atom attached to one oxygen atom.  It now combines with another oxygen atom and forms nitrogen dioxide, a poisonous, brown, acidic, pungent gas.  There is another important molecule that exists in our atmosphere as a gas namely ozone which is three oxygen atoms that combined into a molecule.  Nitrogen mostly reacts with ozone to form nitrogen dioxide.”

“Like nitrogen, oxygen occurs as two oxygen atoms, bound in one molecule.  Ultra-violet light and lightning cause the two tightly bound oxygen atoms to separate and react, either with other single-atom oxygen molecules or with more stable two-atom oxygen molecules.  In the latter case, three oxygen atoms are bound into one molecule (O3).  It is not very stable and quickly breaks down into one oxygen atom and or two oxygen atom molecules or it reacts with nitric oxide to form nitrogen dioxide.”

I wipe my previous simple formulation from the sand to write another very simple one.

NO (g) 1/2O2 (g) —> NO2 (g)

Nitric Acid

“Nitrogen Dioxide (NO2) reacts with more oxygen and raindrops.  Water is H2O.  The two oxygen atoms of nitrogen dioxide combine with the one from water to form 3 oxygen atoms bound together.  There is still only one Nitrogen atom giving us NO3 or nitrate.  There is now still one Hydrogen atom left and it combines with the nitrate to form nitric acid (HNO3).  Nitric acid falls to earth and enters the soil and serves as nutrients for plants.  Old writers  called nitric acid (HNO3) aqua fortis or spirit of niter.”

I clear the sand at my feet for a third equation.

3NO2 (g) + H2O —> 2HNO3 (aq) + NO (g)

“Nitric acid is highly reactive and combines with salts in the soil.  The Hydrogen atom is replaced by a calcium, potassium or sodium atom, converting it to a nitrate salt.  This salt is called saltpeter. The extreme importance of this is that it is plant food.  Saltpeter is used today for gunpowder, fertiliser and to cure meat.”

“Fascinating,” Minette said a bit sarcastic.  I did not notice that she started cooking supper and I can help.  She hands me an onion to peel.  “Saltpeter!”, she said.  I thought its the sweat from a horse.  My dad always said that we ride the horses till the white saltpeter is running down his neck!

I smiled because she did not know how completely correct she was!  The few raindrops that fell stopped.  The sound of the rushing river and the peace of the mountains transcends everything.  I looked at her in the glow of the fire and was struck by her beauty!

The Witels became one of those important cathedrals in our life!  The first time I came down the Witels, it arrested my soul and I fell in love with it.  Unspoiled! If you are thirsty, you drop into the water and drink directly from the river.  The only company for almost the entire length if the baboons on the cliffs.  The place I gave my first lecture on nitrogen and the place where I first noticed how beautiful Minette is.  It was the start of the two great loves of my life.  Unraveling the technical reasons why saltpeter cures meat and Minette!

How much I would love to have you guys here with us.  Today, as they say in the Bible, “my joy is complete” with Minette here with me.  What I was feeling on the Witels and in Penny’s Cave is now undeniable.  I have very strong feelings for this amazing woman who traveled halfway around the world to see me.

When we got home, Andreas and his family provided Minette with her own room.  I was overjoyed that she is staying with us.  That evening around the supper table we told our stories, including my nitrogen lecture on the Witels.  Andreas slapped me on the shoulder when he walked past me.  Let Minette join you tomorrow for Uncle Jeppes’ lunchtime lecture.  He is going to start with “satltpeter” and if you and Minettes’ interest in it, you will both find it fascinating.”

We had the most amazing dinner!

Well, kids, its time to go to bed.  A great week is waiting for me with Minette here.  Next weekend I will write and tell you all about it!

Lots of love,

Dad


green-previous  green-home-icon    green-next


(c) eben van tonder

Bacon & the art of living” in bookform

Stay in touch

Like our Facebook page and see the next post. Like, share, comment, contribute!

Bacon and the art of living

Promote your Page too


References

Mechanisms of meat curing – the important nitrogen compounds

Chapter 08.02 – The Danish Cooperative and Saltpeter

Bacon & the Art of Living 1

Introduction to Bacon & the Art of Living

The quest to understand how great bacon is made takes me around the world and through epic adventures. I tell the story by changing the setting from the 2000s to late 1800 when much of the technology behind bacon curing was unraveled. I weave into the mix beautiful stories of Cape Town and use mostly my family as the other characters besides me and Oscar and Uncle Jeppe from Denmark, a good friend and someone to whom I owe much gratitude! A man who knows bacon! Most other characters have a real basis in history and I describe actual events and personal experiences set in a different historical context.

The cast I use to mould the story into is letters I wrote home during my travels.


The Danish Cooperatives and Saltpeter

Copenhagen, March 1891

IMG-20111009-00023.jpg

My dear Minette,

It is Sunday afternoon.  I slept most of the morning.  I am excited and refreshed.  I know you are here in spirit. Life has turned out much more insanely exciting than I could ever have hoped for. The entire thing is a grand adventure of discovery.  I could never dream that trying to unlock the secrets of bacon would be as insanely exciting as it all turned out to be.  Hopefully, you will receive the letter I wrote yesterday before you get this one.  I will hold on to it and post it next Friday.

I have been wondering about meat curing for as long as I can remember.  Even as a child I tried to imagine how people discovered that dry meat lasts longer.  Initially, I believe that people ate meat raw or fermented.  Animal carcasses that are left outside will start to ferment.  Fermentation breaks the tough muscles down and the first priority of humans must have been to find ways to get tough game meat soft.  Leaving the carcass then outside or in water to protect it from preditors would have been a natural way of softening the meat.  Later, boiling the meat and roasting it over fire became other ways to soften meat or pulverizing it with a stick or a rock.

I imagine that as people soon discovered that dry meat lasts long and the wonderful benefits of salt.  Food was initially only seen as something to consume in order to fuel our bodies.  As humans developed, we started changing food into an art form.  The king or leader and people with means could now demand the best meat.  We learned that meat, like any other food, can be prepared in many different ways to improve the taste and food changed into art.  These different techniques of “softening” meat were becoming art in themselves and Sharma, medicine men and women and housewives became the custodians of this new technology.

When we make bacon, we use a technique called curing.  Cured meat is identified by three things.  The salt and saltpeter change the colour of the meat.  When an animal is killed, the meat blooms a beautiful red colour.  If you do not rub it with saltpeter, it changes to a dull brown colour.  If you, however, rub it with a mixture of salt and saltpeter, it changes the colour to a pinkish-reddish colour.  Related to the science of making good bacon, colour is the first key.

The second thing that saltpeter does is to impart a unique cured flavour to the meat.  The third characteristic of cured meat is taste.  The last one is longevity.  Cured meat lasts long outside a refrigerator and in Europe is the staple food in many countries as far as meat is concerned.

I know saltpeter is important because it imparts all three characteristics to bacon.  Let me rather say it like this.  Using Saltpeter is not the only guarantee for good bacon, but leaving it out of the salt-rub, you will never get the right colour, taste or longevity.  You have the option of drying the meat without saltpeter in which case it will also last longer, but the meat will be dry and it will not have the characteristic taste of cured meat.

In South Africa, the old Dutch farmers fused their knowledge of drying meat in the chimnies in Holland and the North European practice of using vinegar in their hams with the indigenous practice of hanging meat out in the sun and wind to dry.  I have found this to be an ancient practice among all the peoples of southern Africa that I met in my travels.

The Dutch farmers add coriander and black pepper with salt to the vinegar to create what they call biltong.  The coriander and black pepper were initially added to mask any off-flavours in case the meat did not dry quick enough and some spoiling of meat has set in. This is a good example where drying works well to preserve meat with or without saltpeter.  Saltpeter can only be left out of the recipe if vinegar is used and lots of salt.

I have always known that the secret of bacon is in saltpeter, but saltpeter is not everything that goes into the making of the best bacon on earth.  So, my quest to understand bacon starts with saltpeter.  What is it and why does it have the power to give longevity to meat, change the colour back to the colour of freshly slaughtered meat why does it give this unique taste?  These are the questions I knew I had to answer first.

Besides understanding saltpeter, our goal in Cape Town is to set up a factory and not merely making bacon for home use.  Scale changes everything.  This is a lesson I learned from very early on.  On my grandfathers’ farm, I have seen how easy it is to make the best bacon on earth if we make it for our family only.  When my dad’s bacon became famous and Dawid de Villiers Graaff placed an order with us, we made five-time more we normally do.  It was a disaster!  Everything went wrong.  We had more workers to help, but they were not trained.  We could not keep the meat cool and in the end, we had to feed most of the meat to our dogs.  Scale is difficult and the importance of the right structure of a bacon factory is something that we can not under-estimate.  Right from the word go, I came face to face with lessons pertaining to structure and ingredients and the first ingredient to look at was saltpeter!

The Spirit of the Danes

The morning was crisp and interesting.  Andreas’ dad is an impressive man.  He is very intelligent with an amazing knowledge of many things.  He gave me a lot of perspective on what Jeppe told me on Friday.  For example, how did it come about that a man of Jeppes age was exposed to learning new butchering and curing techniques?  Why was there in Denmark such a focus on continued education that people showed up for lessons by the Irish, in sufficient numbers to make a proper transfer of skills possible.  How did the most current thing about the structure of a bacon plant fit so nicely into the Danish culture?  How were the Danish people inspired to take up a new way of doing things?

It often takes a prophet to change long-held perceptions; a visionary to change entrenched positions!  An inspirational man who draws his own strength from the Divine to lift peoples gaze from their own depressed positions and onto better things.  To instill hope.  These are however not all that is needed because these are often also the qualities of an imposter and someone who destroys.  What is needed are all these qualities with a simple and effective plan to improve things.  A person who can lead people to a better and more profitable future.

Andreas’ dad told me about just such a man.  In many ways, he is the father of the agricultural miracle of Denmark.  It may sound like a boring report on men and women who lived very long ago, but the truth is that it is an inspirational story about men and women with their backs against the wall.  Who triumphed against the odds.  The man at the center of the story is N. F. S. Grundtvig.

Denmark was an impoverished nation.  They lost Schleswig-Holstein to Germany.  The soil of their lands was depleted and yielding fewer crops with every harvest.  In all of Europe, the Danish soil seemed to be the poorest.   The conditions in 1864 were dire and farmers had little hope competing with Russia and America with their crops.  They were not making money.  Apart from little diversified agriculture, there was very little money in the country.  Farmers identified dairy farming as a lucrative diversification of their economy, but they lacked the money to make their plans a reality.  The depleted soil on the farms offered little collateral for lenders to advance money against.

I wish so much that I would get every South African to hear their message.  We are a nation of faith and still, we complain as if we have no hope.  What we need in South Africa is a prophet, a visionary and a very good plan!  The plan will in all likelihood have to be built on very practical education!  It is exactly for this reason that I am here!  I need to be very clear on the plan!  To my great amazement, the bedrock of the structure of the Danish bacon factory is in the first place not on the mechanics of doing it one way as opposed to another way.  The basis of their entire system rests on an almost religious belief in the power of cooperation and education!

Grundtvig was a churchman who lived between 1783 and 1872 and was described by some as the Apostle to Denmark.  He taught that Danish people must love their own country above all, more than any other real estate on earth.  He believed that Danes must love God and trust each other; their own skill and ability to solve problems; that success will come through cooperation.  The principal way to achieve this was through education and what he called the “cultivation of the people.”  This was distilled through his concept of high school which is completely different from high school in the rest of the world.

N. F. S. Grundtvig’s high schools were initially attended by people from the age of 18 to 60 or even older and everyone in between.  Every farmer’s adult son and daughter, every farmer himself or his wife, considered it a loss not to attend High School for at least one term.  The poor and the rich paid the same small fees and lectures covered an array of interesting subjects.  Religion and nationalism were part of the course, but it never dominated the other subjects.  Men and women looked forward to high school in the same way as Americans looked forward to a trip to Europe.  What he achieved is that even more than the information that was imparted, a general method of teamwork was created which would become the basis for cooperative farming and production.  Later, men and women aged between 16 and 35 mostly attended these high schools.  Young men attended in the winter and young ladies, in the summer.  Experimental agricultural farms were set up around the schools.  The teaching was not done from textbooks, but from practice.

Cooperation

His teachings against individualism slowly but surely sowed the seeds which germinated into mutual trust and a belief that by doing things together, more can be achieved.  Directly as a result of this, in 1881/ 1882 the first cooperative dairy farm was established in Jutland.  The Danes realised that to be successful, they must find ways for their fields to yield better crops and they must develop better ways to use their crops, once harvested.  Better than selling it at depressed margins on the open market in competition with the Russians and the Americans would be to utilise it to produce commodities.  On par with a relentless focus on scientific farming practices was unprecedented cooperation.  The middle man had to eliminate.  The farmer and the salesman joined forces and discovered that by cooperating they always had “something to go on,” a phrase which became an example of the new approach.

The cooperatives were set up where every member had equal rights.  Each member of the dairy cooperative had one vote and his milk was collected every morning and the cooperative agents returned the skimmed milk.  The cows, therefore, produced butter and feed for the pigs.  Money is loaned from the bank. Each member made himself responsible for repaying the loan in accordance with the number of cows he had.  Every seven days, the members received 25% of the value of the milk they delivered to the cooperative.  Apart from selling the milk to the cooperative, the member was entitled to his shares of the profit on the sale of the produce.  The cooperative kept 25% from which running expenses were paid and the loan was repaid.

There is another reason, Andreas’ dad tells me, why the Danish system works so well.  Not only did they manage themselves, but they also elected farmers to positions of power in government.  It was not only, like the Americans, for the people, by the people, but the Danes took it one step further.  The need and most pressing priority was their agriculture and so the cooperatives elected representatives for the farmers, by the farmers to the government.  These men and women abhor profiteering so that the priority is the benefit of the many.  This hatred for large trusts and monopolies goes back to the old feudal system which was prevalent in Europe.  Peasants did not own land, but in Denmark, this changed and the peasants were allowed to own their own farms.  This gave them every stimulus and motivation to improve the small farms.  It is said that 90% of all farmland in Denmark is owned by small scale farmers.  The first revolution in Danish agriculture was ownership.

The new farm owners started protesting against rulership and land aristocracy.  They sought more political power and proper representation.  They worked out a constructive plan to break up the remaining large feudal farms and to distribute it among sons and daughters of the workers.  Farm ownership, a systematic and thorough education system and the cooperative model for farming and production all work together.  The one feeding the other and strengthening the overall agricultural experiment.  In large part, the middle man was eliminated and the few matters run by the state are done for the benefit of the farmers and not for the government to make a profit.  A good example is the railways.  Still, the Danish farmer is not a socialist.  They simply believe in cooperation who thinks in terms of self-help and are not reliant on the state for help.

As Andreas’ dad spoke, I again wished I could get him to South Africa to come and tell them how it was done in Denmark.  I know that cooperation runs much deeper than simply pooling resources.  The role of education and private ownership was the basis of the Danish miracle and I see no reason why the exact same model cant work in South Africa.  The one reason I see is how deeply distrust runs between the different peoples who call South Africa their home.

Skimmed Milk to Pork to Bacon

In Denmark, it was probably the need to find a use for the skimmed milk that gave the farmers the idea of raising pigs in the same way that the need to feed cows indoor for nine months of the year forced them into intensive farming in fodder.   Pig farming therefore directly grew out of dairy farming.  It was going well with the establishment of cooperative pig farming and the live pigs were sold to Germany.

Before 1888, Danish farmers relied on selling all their live pigs in Germany.  The Germans, in turn, produced the finest Hamburg bacon and Hams from it and it was mainly sold to England.   A disaster struck the Danish pork industry when swine fever broke out in the country in the autumn of 1887.  This halted all export of live pigs.  Exports to Germany fell from 230 000 in 1886 to only 16 000 in 1888.  One of the most insane industrial transformations followed.  In a staggering display, the Danes identified the problem,  worked out the solution and dedicated every available nation resource to solving it. The creation of large bacon curing cooperatives was born out of the need to switch from exporting live pigs to processed pork in the form of bacon and to sell it directly to the country where the Germans were selling the processed Danish pork namely England.  The project was a stunning success.  In 1887 the Danish bacon industry accounted for 230 000 live pigs and in 1895, converted from bacon production, 1 250 000 pigs.

After breeding and pig farming, the next step in great bacon production is slaughtering.  On 14 July 1887, 500 farmers from the Horsens region created the first shared abattoir.  On 22 December 1887, the first co-operative abattoir in the world, Horsens Andelssvineslagteri (Horsens’s Share Abattoir), received their first live pigs for slaughter.  In 1887 and over the next few years eight such cooperative abattoirs were set up and there is still no end in sight where it will end.  Each is in excellent running condition.  As in the case with the dairy farmers, each member of the cooperative has only one vote.  The profit of the middleman and the volumes exported for butter and bacon are determined by the cooperative.  The market price is fixed in Copenhagen on a daily basis by an impartial committee.

Every farmer in Denmark or manager of a bacon curing plant cant be a scientific person, and yet, it is important that farmers and factory managers alike know something of the science underpinning their trade.  It is here where the high school lessons play an important role because it provides a solid foundation and the government is doing the rest.  They have a system of inspectors who look after farms and factories where they do the exact calculations, for example, to show how much butter must be produced from the milk of each cow.  The reason for the inspections was that the Danish Government were required to guarantee the quality of the bacon and the butter it delivered to England, but it had the double benefit of on the one hand guarantees the quality and satisfy the English requirements and on the other hand, improved the quality by assisting the farmers and producers.

The logic of cooperation was extended into England, the largest market for Danish bacon.  Some years ago the English bacon market was being serviced for the Danes by middlemen.  The farmers organised a selling agency in England to represent them known as the Danish Bacon Company of London.  The concept was applied to many areas of the Danish economy.  Banking and buying in Denmark are likewise done cooperatively.  Every village has a cooperative store.

The farmer in Denmark also uses the state in another interesting way.  Commissions are sent abroad to study foreign methods.  It was most probably on one of these trips that the Danes came across the striking workers in Ireland whom they brought back to Denmark to teach them mild curing.  Mild curing technology that came from Ireland years earlier became the cornerstone of Danish bacon.  It was this industrialised model that allowed the Danes to become the undisputed leaders in the world bacon trade.  The Danes did exactly what we intend doing namely learning not only how the cooperative factory is set up, but also the inner workings of such a factory.  They learned this from the Irish and I intend learning it from them!  That will satisfy one of the cornerstone reasons why I am in Denmark.

Neat, Prepared, Ready

Many years ago, on one of my visits to Johannesburg, I met another chemicals traders with the name of Willie Oosthuizen.  Willie told me that wherever I am in the world, before I leave home, every morning I must ask myself, “am I ready, prepared and neat?  These are according to him, the three essentials without which nobody will be in a position to use opportunities that come our way every day.

Thinking about the Danish Bacon trade, I realise that the government ensured that when the right time came, the industry was ready, prepared and in a general position of neatness.  It is a strange thing that as we walked through this small Danish town and I saw the small but neat Danish houses, that I could see this Danish approach to life in everything.  I do not see class differences between people.  I see people from all walks of life getting together in small coffee shops at the end of the day, celebrating life and sharing stories.

I can see how my quest to unravel good bacon curing is teaching me as much about life than it is teaching me about meat.  Andreas told me something this afternoon before I retired to my room which is very curious.  He told me that I am too quick to claim that this is the end of my quest.  That simply knowing the steps of bacon curing without understanding it is not to know the steps at all.  Brief exposure to the Danish attitude towards work and cooperation and the internal mechanics of a bacon curing operation is only the beginning of my education.

We were sitting in a small coffee shop one afternoon when Andreas and I were talking about all these matters.  Nothing about the pork trade is easy!  It is one of the most wonderfully complex trades on earth!  He asked me how long I think I will have to stay before I know enough to set up our Woodys bacon plant in Cape Town.  I knew enough by now not to simply venture a guess.  “As long as it takes”, I said.  He smiled.  “There is so much to learn!”  “Stay for at least a year!”.  He then produced a pouch with salt in.  He placed it in the middle of our table.  I dipped a finger in the salt and tasted it.    I recognised it as saltpeter.  “This, he said, is the next subject.  I discussed it with Jeppe and he agrees that after the structure of the factory, understanding Saltpeter is your next priority!”

That was where our business talk ended.  The rest of the afternoon we talked about life.  What it was like growing up in Cape Town and the many different cultures that co-exist in this great city.  I shared many of my experiences with him from my transport business.  I told him the story of Joshua Penny and how, after his ordeal on table Mountain, a Danish captain gave him a job on his ship sailing for Europe.  I invited Andreas to visit us when we set the Cape Town factory up.  The evening was pleasant and I became very fond of my Danish instructor.  A great friendship was struck that would last the rest of my life.

Please give the kids all my love and to our dear parents.  Please give them both my letters to read before you sent it on to Oscar, James, and Will.  I will write Dawie Hyman, David de Villiers Graaff, and Uncle Jakobus separately.

I miss you dearly!

Eben

——————

Photos from Chris Speedy and my visit to Denmark in 2011 when Andreas Østergaard introduced us to the science of bacon production.  Chris was a master, but as for me, I knew nothing! 🙂


green-previous  green-home-icon    green-next


(c) eben van tonder

Bacon & the art of living” in bookform

Stay in touch

Like our Facebook page and see the next post. Like, share, comment, contribute!

Bacon and the art of living

Promote your Page too

Bacon Curing, a Historical Review

Detroit Free Press (Detroit, Michigan) 7 October 1906, p 60.  From The Little Kingdom at the Mouth of the baltic Great Nations May Learn How to Build Up a Trade in Dairy and Meat Products.

Ellsworth County Leader (Elsworth, Kansas) 18 December 1919, p 2.

The Mother Brine

Tank Curing came from Ireland

The Yazoo Herald (Yazoo City, Mississippi), 7 November 1914, p 2, from the article, Agriculture in Denmark.

Chapter 07: The Greatest Adventure

Introduction to Bacon & the Art of Living

The story of bacon is set in the late 1800s and early 1900s when most of the important developments in bacon took place. The plotline takes place in the 2000s with each character referring to a real person and actual events. The theme is a kind of “steampunk” where modern mannerisms, speech, clothes and practices are superimposed on a historical setting.  Modern people interact with old historical figures with all the historical and cultural bias that goes with this.


The Greatest Adventure

Johannesburg, May 1890

ox-wagons-crossing-vaal-river-on-a-pont-1890s
Crossing the Vaal River, c 1890

Soon after I started my transport business, I married the daughter of a German immigrant who set up a blacksmith business, making wagon wheels in Port Elisabeth, Colin Beckmann.  I met Julie at church. We fell in love and decided to build a life together.  She was 20 and I was 26.

Her grandfather on her mother’s side was the British High Commissioner to Zambia and very English. My parents were delighted with our relationship.  Not on account of the position of her grandfather but because they thought I would never find a wife!

My friend, David (Dawie) de Villiers-Graaff had a different focus. He told me many times whenever I brought the subject of marriage up that he will marry as soon as he made his millions.  I thought about those words often over the years and wonder who was a millionaire at 25.  Him with millions in the bank or me with my family with two kids.  Then again, he created a wealth that will last many generations and engineered advantages for his children and successive generations.  Looking back on my life, having children early is still a choice I would make 100 times over.

Very soon after our marriage, I was back on the road, hauling mainly food and building materials between the Cape and Johannesburg.  Even when Julie was pregnant with our two children, Tristan and Lauren, I did not stay home very long, always being driven by a strange mix of a somewhat misplaced quest for adventure and a drive to care for my young family.  When I was home we were happy together but being away from home had its toll on our relationship.

viljoensdrift-ferry
The Vijloensdrift Ferry, c 1900

On one of my trips in 1890, I was crossing Vijoensdrift.  It is a few hours ride outside Potchefstroom and one of the best places to cross the Vaal River on your way to Johannesburg.

I was contracted by a certain Mr. Vincent Reeves to transport chickens to the Johannesburg market.  Mr. Reeves, originally from Minnesota in the USA, purchased land in the Parys district and set up a chicken farm.  He studied chicken farming intensely and was successful in Minnesota.  Upon learning about the discovery of gold on the Rand, he conceived a plan to buy land in the Transvaal Republic, not far from Johannesburg to farm chickens for sale in the lucrative Reef market where gold mining was exploding. (1)

Mr. Reeves was, by all accounts, a very good chicken farmer but not well versed in geography.  An unscrupulous fellow back in Minneapolis convinced him that Parys was closer to Johannesburg than it actually turned out to be.  The reality is that Parys is in the Orange Free State and Johannesburg in the Transvaal – two different Boer republics.  Nevertheless, he thought it was close enough, which it is, and forged ahead, setting up the farm.  On this day I was trying to cross the Vaal river at Viljoensdrift with Mr. Reeves’ chickens on my ox wagon, taking them to the Johannesburg market.

It was after a particularly wet spell and the river was high.  I was tired after a long journey, eager to get to Johannesburg and my exhaustion caused an error in judgment. I should have taken better notice of the speed and level of the river.  We should not have crossed at that time.

Hans Viljoen had set up the ferry and by 1857 was taking travelers, their horses, and wagons across the Vaal River. Over the years, the crossing became known as Viljoensdrift. (2) This was where I was making the crossing.

Everything went according to plan.  Just before we reached the Transvaal side of the river, one of the ferry anchors came loose.  It tilted slightly to one side and dipped into the rushing current.  As the ferry got pushed down, my wagons started rolling forward. Desperately I tried stopping it from the front but it was too heavy.  On it was Mr. Reeves chickens, salt, maize, and building materials.  I had little chance.

On the Transvaal side of the river, a Boer from the Potchefstroom district was waiting to cross himself.  His name, Oscar Klynveld.  He was sitting on the bank, on his horse, when the anchor rope came loose.  With no hesitation, he spurred his horse on and raced towards the ferry while yelling to others on the bank to come and help.

fb_img_1590853983906
Crossing the Vaal was not always smooth sailing.  Here, an ox wagon got stuck crossing the Vaal river.

His horse plunged into the water.  He kept feeling the depth of the water with the handle of his whip (5) with water swirling around his horse’s chin as it tried to keep its head above the water.  The surging river caused the ferry to tilt dangerously and bags of grain dislodged from the wagon.  Oscar jumped into the water and swam the last few meters next to his horse.

He pushed himself up onto the ferry.  His trusted steed turned to make it back to the land. Oscar scrambled onto the ferry and grabbed hold of the one front wheel, shouldering back against the forward motion of the wagon.  Together we held it.  Tentatively.

He continued to scream at others to swim faster to get to us.  Within the blink of an eye, there were five Boers on the ferry and we held the wagons back till the wagon was steadied.  I saw Hans Viljoen running down to the landing site of the ferry, cursing and swearing at his workers who, by this time, re-fasten the anchor that came loose.

The ferry, my wagons and seven, very wet and cold, Boers made it safely to the Transvaal side of the Vaal River.  That was how a friendship started that would last a lifetime.

Oscar invited me to his farm, not far from Vijoensdrift.  I left one of my men in charge of the wagons and set off on my horse, Lady.  Oscar was farming in the old Boer republic of Transvaal, in the Potchefstroom district.  When I told him about Mr. Reeves and his chickens, he was eager to learn more since he heard similar stories about farmers in Europe and America who set up successful pig farms close to large cities.  He was always looking for ways to expand his farming operation.  What interested him about pork farming was how one sow produced many piglets compared to cows and sheep and you can take the pigs to the market sooner. There was already large chicken farms around Potchefstroom and he had no interest in competing with them.

On my account, I did not know much about farming, but I did know a great deal about Dawie, Uncle Jacobus and Combrinck & Co. who bought and slaughtered many pigs.    They even farmed for themselves.  They supplied the public in Cape Town, the passing ships at the Cape of Good Hope and had contracts with the Cape government to supply the navy and the army. (3)  Oscar saw the opportunity to not only supply Johannesburg but as soon as the railway line is linked all the way from Johannesburg to Cape Town, why not sell the pigs to Combrinck & Co.!

Johannesburg markplein …1890. Photo supplied by Nico Moolan.

Oscar and I talked till late in the night. His wife, Trudie kept making us fresh coffee. We wondered about selling pigs.  I, of course, knew how to dry cure bacon.  It was, so to speak, in my blood from childhood.  We could cure our own bacon!  Of course, Uncle Jacobus already made and sold bacon using my dad’s recipe, but making it was a long and slow process that could only be done during the winter.  As a result of this, Combrinck & Co. imported much bacon.  The best imported bacon was produced by the Harris family in Calene, in Wiltshire, England.  Oscar and I reasoned that if they can produce large volumes of bacon and sell it here in South Africa, why can’t we cure the bacon in Potchefstroom and sell it across the country?  We could possibly even export it to other countries!

One thought led to another and as we spoke, a clear plan started to emerge that involved producing and selling bacon.  Later that evening after supper Oscar and I transitioned from coffee to witblits (4). I told him about my misgivings about the future of the country and that I did not see riding transport as a long term occupation. Not only was I skeptical about the safety of such an occupation in a land which I saw becoming more divided by the day and racial prejudice and distrust increasing, I also expected the railway line between the Cape and Johannesburg to be completed very soon and there would be no more need for the transport rider. On his side he was eager to diversify away from cattle farming and the prospect of processing the meat further appealed to him.

That night I was not just a young man who cured bacon once a year on his grandparents farm. I was a master butcher who could do anything. Together, we saw ourselves as invincible and everything seemed easy. We knew the right people and had the right skills to farm, make the bacon and sell it.  How difficult could it be?

Over the years we have many times thought back to the many similar discussions we had in the beginning.  Little did we know what skill, knowledge, and capital it took to set up and run a bacon curing company. Especially to make good quality bacon like the Harris family with their Wiltshire cured bacon.

That night in Potchefstroom we had all the answers to life’s questions and it is right that young people should think like this.  Otherwise, if tainted by the skepticism of experience, nothing new will ever be started.  There are very few times when ignorance is a good thing but in this case, it really was.  If we knew how difficult the voyage would be that we embarked on, we would never have done it!  As it is, it turned out to be the start to the greatest adventures ever!


green-next
green-previous
green-home-icon

(c) eben van tonder

Bacon & the art of living” in bookform

Stay in touch

Like our Facebook page and see the next post. Like, share, comment, contribute!

Bacon and the art of living

Promote your Page too


Notes:

(1)  Vincent H. Reeves from the Twin Cities, Minnesota was a chicken farmer and an entrepreneur in the 1890’s who owned a 10-acre farm in the Golden Valley.  He made a careful study of the chicken industry and devised to use steam to do away with the hens altogether for incubation. (Saint Paul Globe, page 5)

Eben and Oscar met when Eben was the Johannesburg Depot manager for Goosebumps Frozen Foods and Oscar was the owner of Transwest Distributors, located in Potchefstroom.  Oscar was a sub-distributor, used by Goosebumps to service farts of Gauteng and the North West province.  One of the commodities that Eben and Oscar worked on together during this time was the distribution of frozen chickens.  Oscar had Eben’s name saved on his phone for a long time as “Eben Chicken.”

(2)  “It started with the drift, that is a river crossing over the Vaal. Hans Viljoen advertised in 1857 that he has a pond and is able to ferry people, wagons and live stock over the Vaal on his father’s farm Witkop…. Until a few years ago one could still see the steel post to anchor the rope.  The crossing must have been active until 1927 when the road bridge (single lane) was constructed.”   (ruralexploration)

(3)  It is this tradition of supplying the general public, state departments and the navy of Combrinck & Ross (Domisse, page 26) that, I believe, laid the foundation of the future success of David de Villiers-Graaff with Combrinck & Co and later Imperial Cold Storage & Supply Ltd.  They continued to supply the British army and won the contract to supply meat to the British forces during the Second Anglo-Boer war which contributed substantially to the wealth generated through the company.

Woody’s Brands was created in the first place to supply retail.  This is a notoriously difficult market to enter but both Eben and Oscar had mainly retail experience and for them was a natural starting point.  It was buyers at Shoprite and Pick ‘n Pay who motivated Eben to create the Woody’s Brands and who gave the company its first break.  Retail remained the almost exclusive focus of the company during its first 5 years, until around 2015 when its own factory made it possible for them to enter catering and food services markets.

(4)  Witblits or “white lightning,” similar to Moonshine is a brandy made from grapes.

(5) The image of measuring the depth of the water with a whip I got from a series of articles I did on the life of Petrus Pooe.  “Petrus remembers that the Vaal River was in flood, and describes the difficulty experienced in crossing it above Lindequesdrift. “I had never seen such drama in my life,” he says. He remembers his father feeling the depth of the water with the handle of his oxen whip, his brother Samuel leading the oxen into the water until it was swirling around his chin, the surging river dislodging bags of grain from the wagons.”

crossing the vaal

The photo is Crossing the Vaal (at Vereeniging) published on the web by The Heritage Portal. The life and story of Perus Pooe is from, Facing the Storm: Portraits of Black Lives in Rural South Africa by Tim Keegan, 1988, published by David Philip, Cape Town.

References:

Dommisse, E.  Sir David de Villiers Graaff, First Baronet of De Grendel.  2011.  Tafelberg.

Saint Paul Globe (Saint Paul, Minnesota), 3 March 1890, Page 5, Chickens by Steam.

Photo Credits:

Crossing the Vaal – https://www.moltenofamily.net/picture-gallery/transport/

The Viljoensdrift Ferry, courtesy of the Vereeniging Museum.