Meat-on-Meat Injection for Bacon and Ham Production: Injection for Profit and Taste

Meat-on-Meat Bacon and Ham:  Injection for Profit and Taste
Eben van Tonder
December 2020

Introduction

After many years in the bacon industry, and working on sausage technology, I was able to conceptualise a complete bacon line, almost fully automated, exploiting a selection of different equipment and sets of technoligy, and in cooperation with a few key players in the industry, to design a bacon line which will deliver volume, at a cost never achieved before.

The new technology will, for example, make vastly reduced nitrite and possibly nitrite free bacon a reality which is not based on smoking-mirrors, as is currently wide spread in offerings to consumers. Plant based brines are used where nitrites are produced by the plants in large concentrations due to how the plants are cultivated and by exploiting loopholes in legislagion, producers are not declaring the nitrites since they did not add chemical nitrites. They only declare the plant juices but do not have to say that by adding these, the also added extraordinary additional quantities of nitrites.

New technology we are working with makes it possible to produce bacon with either very low nitrite levels or, possibly even, removing it completely. (Removal of Nitrite from Meat Curing Systems)

The fact that the system we are conceptualising is continus with minimal handling becomes a powerful hurdle against clostridium and botulinum poisoning which is the reason why nitrites is allowed in meat.

The main contribution I want to focus on here is, however, the possibility for meat-on-meat injection with a scope of application that has not been possible before. Further, I want to put it in the context of the best bacon system on earth since it is only one additional building block to a complete system.

Much of the thinking was inspired by sausage technology.

From Sausage Technology – Back to Bacon

I have been working most of 2020 on fine meat emulsions (Nose-to-Tail and Root-to-Tip: Re-Thinking Emulsions). Most of my work was on re-working the formulation. I started by grouping the different chemical reactions together along with ingredients which links to the reactions. From this I produce a number of emulsions (emulsions is an old and incorrect industry term – meat paste is more accurate). The different pastes are created seperate using the new super emulsification system. The different pastes are then combined through a mixing step, where spices and showpieces are also added. It was during this phase of trails, creating the different meat pasts, when I bacame aware of the possibility to apply the technology to reduced nitrite or even nitrite free curing systems.

After blending, we move to filling through a filler and a hanging line into a continuous smoking system. No trollys required. The sausages goes in on the one end, are dried, smoked and schillied in one continuas system and comes out on the other end at 4 deg C and packed immediately. It easily adds another hour production time, reduce staff cost and handling and improves product quality, consistency and safety! On the back end, we are looking at continuous and automated packing solution and a man who designed and implemented one of the largest of these lines in the world will be assisting me.

The Relevance to Bacon

I started my career in meat processing as a bacon man and as I was working today, I thought about BACON! The applications of what I learned this year are enormous.

  • Meat-on-Meat Injection, through the use of the super emulsifier, becomes the most obvious application in brine injection. Inject lower cost trim with spices added into whole meat muscles. Around the world, super quality meats are produced using the general concept of injecting meat into meat. It has, however, never been this easy or commercially viable! The list of possible raw materials used for such injection is also tremendously expanded.
  • In formulating the brine, we are able to use components such as tendon and rinds which for the first time is now injectable! Other systems exist, but not one as simple, clean and wide in application as this one.

Below I introduce you to the equipment which will produce the brine. This innovation may very well be the biggest breakthrough in brine technology over the past 100 years since the direct addition of nitrites to curing brines. (Best Bacon and Rib System on Earth)

Meat-on-Meat

We can now continue to place the new technology in the context of the broader bacon system.

  • The injected bacon logs are rested and loaded into bacon grids which we designed (Best Bacon and Rib System on Earth). We opted for individual baskets which are filled and pressed individually after which the entire log with the basket can be loaded into the smoking/ cooking/ freezing chamber. It will be easy to see how it works if you study the baskets and the pressing system shown in Best Bacon and Rib System on Earth. The fact that the baskets are ONLY removed at the end of the line, after freezing, speeds the smoking and freezing process up due to the effect of the stainless steel and its thermal properties.
  • The same approach to the continues drying, smoking, cooling of the sausages has been adapted with a freezing step at the back. It is envisaged that bacon logs will be de-gritted at slicing temperatures or slightly above if manual Treif-type slicers are used. An automated de-grid system is being designed that must allow the grids to slide into the system which removes the lid from the basket, tips the basket over for the bacon log to fall out from where it moves directly to the slicer or, alternatively, to a boxing station where they are boxed and palletised before storage in a freezer for later slicing.
  • The basket are then either sent to the manual cleaning station or into an automated high pressure spray cleaning system.
  • Slicing/ packing solutions have been developed over the years which makes automated slicing and packing possible with minimal human handling. Several very good system is available commercially.

Pasteurisation?

The one major issue I don’t have clarity on is Pasteurisation. High-Pressure Pasteurisation, for all its claims, does not seem to add up to a viable investment compared to heating systems (PPP) which can be constructed in-house or at much lower cost by contractors. This is the consensus opinion of production managers from around the world whom I consulted on the matter. I have had no time to look in more detail into the matter myself. The fact is that some form of eliminating contamination during packing should be part of the total system. The effectiveness vs total cost of ownership of the different systems must be thoroughly understood. Systems working with light and ultrasound should also be considered and combination systems. I would love to receive comments and input on this matter especially from production managers. In South Africa, there seems to be a wholesale rush to HPP, but I am not convinced. It may be, but I would love to see the data for myself and get more input from production managers and business owners with first hand experience.

Conclusion

I feature new technology in terms of brine preparation, but set out new thinking about drying, smoking, chilling and freezing through one of the most advanced Smokehouse producers in Europe. We developed a bacon grid system which fully integrates into this drying, smoking, chilling and freezing system and skilled designers are completing the work by focussing on an automated offloading and de-gritting system from where the bacon will either be sliced or stored.

The possibility exist to use the new brine preparation technology featured here, to create vastly reduces nitrite or even, possibly, nitrite free curing systems.

All-in-all, claiming that this is the most advanced system on earth is not an exaggeration!

Continue reading

Chapter 08.05 The Polenski Letter

Bacon & the Art of Living 1

Introduction to Bacon & the Art of Living

The quest to understand how great bacon is made takes me around the world and through epic adventures. I tell the story by changing the setting from the 2000s to the late 1800s when much of the technology behind bacon curing was unraveled. I weave into the mix beautiful stories of Cape Town and use mostly my family as the other characters besides me and Oscar and Uncle Jeppe from Denmark, a good friend and someone to whom I owe much gratitude! A man who knows bacon! Most other characters have a real basis in history and I describe actual events and personal experiences set in a different historical context.

The cast I use to mould the story into is letters I wrote home during my travels.


The Polenski Letter

June 1891

My dear Son,

This weekend we had plans to visit the geology museum at the University of Copenhagen.  It is summer in Denmark and the demand for our bacon is very good.  We all agreed that we would go next weekend and put in extra work on Saturday to get through our work.  Next weekend Uncle Jeppe will not be able to join us but we will all still go, capitalising on good weather we are having.  I am not disappointed at all.  The most unexpected set of facts became known to us.

the_noord-nieuwland_in_table_bay_1762
The Noord Nieuwland in Table Bay 1762

There is much that we can learn from the Danish nation.  Their food, the strange shops, elevated above the streets, the beer and the warm people.   I realised that the culture of this amazing land is having just as big an impact on me as what I am learning about the curing of bacon.  These people set their mind to a task and then work to achieve the goals.  They not only learned from the Irish system of curing but took it to new heights by combining it with their powerful and unique cooperative model!  I am learning the mechanics of a bacon curing business and spend a lot of time on the topic of saltpeter.  Andreas gave me a word of caution that knowing the steps of a process and understanding the process are two different things.  My understanding of the steps in bacon production will flow from my understanding of saltpeter.

No sooner did I hear those words from Andreas when the ever-resourceful Jeppe presented me with the next gold nugget in my education.  How it happened that I came to Europe at this time, is remarkable.  It is exactly in this epoch when humans are discovering that, despite the fact that saltpeter has been used for thousands of years to cure and preserve meat, there is an even more fundamental principle behind it that stems from the composition and nature of saltpeter.  This fundamental principle is a relative of saltpeter or sodium nitrate, called sodium nitrite.  The “a” changes to an “i“.

FOODS by Edward Smith

After supper, at the Østergaard home, we follow another great Danish tradition. We read together and discuss what was read.  This is customary in many households. The Danes have a  practicalness about them.  As I have seen from their unique high school model, they never stop learning and if something works, they adopt it.

Andreas’ dad chose as a book to read every night after supper, called Foods, written over 20 years ago in the 1870s by an Englishman, Edward Smith.  He helped me to see the curing of meat as both a necessity and a delicacy.  We cure meats because, for the most part, using modern curing methods, cured meat tastes great.  On the other hand, meat curing was started to impart longevity;  to prevent spoilage.

Back home we are familiar with the value of meat that “last.”  In Europe and England with their growing populations and vast navies that have to be fed, it has been an obsession and a priority to solve the problem of conserving meat for future use.  Edward Smith says in his book that “the art of preserving meat for future use, with a view to increase the supply and lessen the cost of this necessary food (meat), is of very great importance to [England] and all the available resources of science are now engaged in it.” (Smith, 1876: 22)  This meant that the best scientists of the time devoted at least part of their work to unravel the secret of meat curing in order to develop mechanisms to manipulate the process.  The discovery that it is not actually saltpeter (nitrate) that cures meat but nitrite grows out of this focus.

Smith lists the main ways that meat preservation is done, as “by drying, by cold, by immersion in antiseptic gasses and liquids, by coating with fat or gelatin, by heat, salted meat and by pressure.” (Smith, 1876: 22 – 38)  All have their benefits and disadvantages and I have a feeling that over the years, the technology within any one of these groups may develop, but these broad categories will remain and continue to be available to the public.

Edward Smith says that pork is particularly prized over beef and mutton because of the  “taste, but chiefly perhaps [due] to the universal habit among the peasantry of feeding pigs, which has descended from Saxon times.  Moreover, there is a convenience in the use of it, which does not exist with regard to beef and mutton, for in such localities the pork is always pickled and kept ready for use without the trouble of going to the butcher, or when money could not be spared for the purchase of meat.”  Pigs proved to be an equally prized meat in the new world due to the “ease with which pigs are bred and reared, and the meat preserved, whilst there is great difficulty in obtaining a sufficient number of persons, in a thinly populated country or a small village, to eat a sheep or ox whilst meat is fresh.  (Smith, 1876: 59)

“Bacon is made when cuts from the pig are preserved by salt and saltpeter.”  (Smith, 1876: 64).  This gives bacon its characteristic pinkish/ reddish colour, a nice flavour, and it lasts a long time before it tastes “off”.  This is the kind of thing we learn at night.  After a good supper, we discuss what has been read for an hour or two before retiring to bed.

At Uncle Jeppe’s bacon curing factory I started working in the curing department where we mix herbs, spices and salts.  Uncle Jeppe is a knowledgeable man and it seems as if he has been around in the meat industry forever.  I have not asked him any question that he did not know the answer.

Saltpeter is the curing salt for bacon and hams which I work with every day in the curing department.  When we do dry curing, we use 1.25 st. (10 pounds) salt, 0.375 st. (3 pounds) of brown sugar, 0.04 st. (6 ounces) of black pepper and 0.02 st. (3 ounces) of saltpeter.  We use 1.25 st. (10 pounds) of this mixture per 12.5 st. (100 pounds) of meat.  (1, 2, 3)  The Irish system of mild cured bacon calls for a liberal use of saltpeter and the purer form called sal prunella.  It is military-grade refined saltpeter. This is the main curing system we use and in both dry curing and tank curing (as mild cure is also called), it is a key ingredient.

What confused me much about saltpeter was that Trudie’s dad, Anton, also talks about the value of phosphates and saltpeter in fertilizing their fields in the Transvaal.  We know that it is the explosive power in gunpowder.   I know that the Dutch East Indian Company, as well as the English East Indian Company, were created, in large part, for the purpose of transporting saltpeter from India to Amsterdam, London and other European cities like Copenhagen for fertilizer and to make gunpowder. How can this one substance be useful for such diverse applications?

The power of saltpeter is the fact that it contains nitrogen and nitrogen is one of only two elements, with carbon, that can exist in 8 oxidation states.  This means that nitrogen can react in a diverse and complex way and, like carbon, is foundational to all of life.  The two substances that contain nitrogen, most familiar to us, are saltpeter and ammonia.

The nitrogen in saltpeter makes it very reactive, giving it an explosive power.  In saltpeter it has a particular effect on blood, explaining the fact that it gives cured meat its pinkish/ reddish colour.  Nitrogen exists in the first place as a gas in our atmosphere and comes into our world in different ways.  Remember the lecture I have Minette and the baboons on the Witels about how saltpeter is formed?  I said that there are other ways in which atmospheric nitrogen is converted into a salt that we can use.  The most important process is not through the action of lightning as I explained on the Witels but through microorganisms with the ability to take it from the air and convert it directly to plat food.

Dr. Eduard Polenski – Nitrate and Nitrite

Uncle Jeppe told Minette and me that he will return to the fascinating story of how this was discovered but must be patient to hear this another day.  The first very tentative step to identify the “real” curing agent came when a friend of Uncle Jeppe discovered something remarkable.  His friend’s name is Dr. Eduard Polenske (4), a chemist, working at the Imperial Health Office in Germany.  Jeppe tells me that 1891 will forever be remembered as a watershed year for Woody’s since it is the year I arrived in Denmark and started learning about bacon curing; for the curing industry in South Africa since it is the year when Woody’s took the first steps to excellent bacon in Africa; and for the curing industry around the world because of Dr. Polenskis’ discovery.

He tested and saw that curing brine (the curing salts) and cured meat contain nitrite. This is remarkable since we know that saltpeter or nitrate does not contain nitriteNitrate is codecogseqn-2.  The one oxygen atom in the nitrate composition is not as tightly bound as the other two and is easily stripped away.  The new compound is nitrite.  On the other hand, nitrite (codecogseqn-5) has the affinity to combine with an extra oxygen atom to again form nitrate (codecogseqn-2). It is a very volatile compound. Nitrite is then when one of the three oxygen atoms is removed from the molecule and we have codecogseqn-5.  It does not look like something important but it changes the nature of the compound. 

When meat is cured with saltpeter, nitrate (codecogseqn-2) is added.  If Dr. Polenski tested the brine and meat and found nitrite (codecogseqn-5) present, the only way this could occur is if somehow the one oxygen atom was stripped of the saltpeter molecule to form nitrite (codecogseqn-5).

The fact that he discovered nitrite in the curing brine is of concern because nitrite is toxic. I know nitrite very well! In Cape Town, as is done around the world, the local water is tested for nitrites every day and if the levels are too high, one can not drink the water.  It is so important that newspapers report the nitrite counts in the water on a weekly basis.  Farmers can suffer loss if their livestock drinks from this contaminated water.  For humans and animals, it can be fatal.

The Value of Speed

Before Uncle Jeppe learned about Dr. Polenskis’ findings in 1891, what we knew is that only saltpeter or nitrate is used to cure meat.  We also know that the Irish system of curing compared to dry curing cures the meat much faster. This matter of the speed of curing is important.  Dry curing is accomplished in 28 days where mild cured bacon can be produced in 19 days. On farms, long curing is generally not a problem, but for a commercial curing operation, it means that you keep large stocks of bacon that are in the process of curing. If you produce bacon for household consumption, that is one thing, but when you have an army to feed, speed is of the essence.

The question has been asked why mild curing cures meat faster than dry curing and various possible answers have been discussed.

The Wiesbaden Meetings

Jeppe and Ed met up in Wiesbaden, Germany, earlier this year.  This has been an annual winter ritual for the two men taking their annual retreats at the same time.   They became acquainted at the  General Congress on Hygiene in Brussels in 1852.  It is exactly the hygienists that Dr. Ed fears will be most concerned about the fact that he found nitrites in cured meat.

Both men attended the conference and struck up a friendship based on their shared passions.  Wiesbaden is famous for its hot springs since ancient Roman times and the second shared love between these men, besides meat technology and science, is their love for hot springs.

They have been hosted each year by an equally interesting man, Francois Blanc, at one of his gambling resorts in Wiesbaden.  It is said that he is the man who made Wiesbaden what it is today.  Jeppe describes Blanc as a mighty wizard with an eye, quick to see the possibilities of a situation, with a brain to plan and a hand to execute.  His ambitions and achievements are great across Germany, yet, Jeppe tells me that his tastes are simple.

His clothes do not attract any attention and he wears his spectacles on the tip of his nose.  He does not pay attention to flattery, yet, he is a hard-headed, silent man without any enthusiasm and equally without any weaknesses.  He keeps lavish tables, yet he himself eats sparingly.  His wine cellar rivals those of the autocrats in Russia, yet, he himself only drinks mineral water.  He is one of the largest gambling hall owners in Europe, yet, for entertainment, he may occasionally play Dominoes and frequently goes on a drive through the countryside with his wife.

It was at their annual retreat at Wiesbaden, earlier this year, where Dr. Ed told Jeppe about a monumental discovery.  Dr. Ed is not a fan of cured meat since in the process of making it, nutrition is lost.  The entire matter of the relationship between nutrition and nitrogen is introduced by this statement.  Unfortunately, the subject is of such a nature that, again Jeppe said that we will deal with this over the next two weeks.  For the time being, we take Jeppe at his word of such a relationship (nitrogen and nutrition).

Without looking too much into the subject, my suspicion is that this has to do with the meat juices that are lost in dry curing.  I also suspect that in the loss of meat juices, nitrogen is lost which explains the loss of nutrition, if indeed the relationship between the two is linear.  The new Irish system largely overcomes the loss of meat juices by filling the tank with liquid brine and placing the meat inside it.

This means that pressure is created around the meat with brine wanting to draw into the meat instead of drawing the albumen (protein-rich protein) out of the meat.  If the meat is not placed in liquid brine, as is done in dry curing where the meat is only rubbed with salt, in the mild curing technique, brine seeps into the meat as opposed to albumen (meat juices) being drawn out of it. In mild curing, no albumen is lost.

For the most part, dry curing is practiced with an accompanying loss of nutrition. At a time when most families across the world can not afford to eat meat more than two days a week and where most children go to bed hungry, at least a couple of times a week any loss of nutrition is a problem in any food. In the current world context, Dr. Polenske believes the most important consideration in evaluating methods of preservation is its effect on the nutritional value of the preserved food. He is obviously not very familiar with the Irish mild cure and in his work, he mainly considered dry curing.  His observations about the formation of nitrites are, however, volcanic!

The Polenski Experiment

Dr. Polenski designed an experiment to study just how much nutrition is lost.  The brine he prepared was a combination of salt, sugar, and saltpeter.  (5)  He put this in three jars with three pieces of meat which he sealed and opened again after 3 weeks, 3 months and 6 months respectively.  When he tested for nitrite, he unexpectedly found it in the brine and the meat, despite the fact that he did not add any. (6)

The Foundational work of Ulysse Gayon and Gabriel Dupetit

Dr. Polenske told Jeppe that he was not really surprised to find nitrite in the brine since he knew that saltpeter is a compound of potassium or sodium nitrate.  Nine years earlier a drama unfolded with a discovery by French scientists of bacteria that changes nitrate into nitrite and further into nitric oxide.  What this means is that certain bacteria, under certain conditions is able to remove one oxygen molecule from nitrate (codecogseqn-2) to form nitrite (codecogseqn-5).  It is further able to remove another oxygen atom from the nitrite (codecogseqn-5) to form Nitric Oxide (NO).  Thus, it is clear that the conditions that favours such a removal or “reduction” as it became known of nitrate to nitrite must exist in curing brines and must occur in the meat.

In 1882 a team of researchers, Ulysse Gayon from the French commune or town, as we call it, Bouëx in Charente and his 22-year-old collaborator, Gabriel Dupetit, from the town of Auch, Gers, coined the term denitrifying bacteria.  This formidable research team went on to make a number of very important discoveries about denitrifying bacteria. (7)

Nitrification starts with nitrogen gas which is one of the most abundant gasses in our atmosphere and through the nitrification process, bacteria create more complex compounds such as nitrate (codecogseqn-2).  An example of nitrification is ammonia (codecogseqn-7) which is changed into nitrite (codecogseqn-5) and finally into nitrate (codecogseqn-2) which serves as the nutritional source for plants.

Denitrification is the reverse where a more complex molecule is broken down to the point where it ends up with a simple molecule like nitric oxide (NO) or pure nitrogen gas (codecogseqn-6).  Denitrification is, therefore, the reverse of nitrification.  This time it starts with a complex compound of nitrate (codecogseqn-2)  which is changed into nitrite  (codecogseqn-5), into nitric oxide (NO), into nitrous oxide (codecogseqn-8) and finally back into nitrogen gas or molecular nitrogen (codecogseqn-6).  Note the gain or loss of the oxygen atom in both processes.

The Mentorship of Louis Pasteur

Louis Pasteur, the renowned French chemist, and microbiologist urged Gayon to follow what happens with the oxygen of the nitrite utilised in the process of denitrification.  They heeded his advice paid close attention to this.  They conclusively refuted an old notion that nitrate was reduced through chemical means by hydrogen, generated during fermentation.  As to the purpose of the loss of oxygen they believed that the bacteria used the oxygen from nitrogen for the combustion of organic matter to generate carbon dioxide (CO2). (8)

Based on their very thorough work, Dr. Polenske believes that nitrite is present through this process of denitrification of nitrate by bacteria.  He expects there to be much public concern following his discovery.  (9)

Jeppe and the Main Point

Jeppe was now becoming particularly excited. “Eben, Minette!” he said and put his hands around our shoulders. “In dry curing, we start with nitrate. Sodium or potassium or calcium or magnesium nitrate, depending on where you harvest the nitrate from. Nitrogen and THREE oxygen atoms.  We mix it into salt and rub it on the meat to cure in dry curing. What is happening?”

I told him that the nitrate will be turned into nitrite by bacteria. “Yes, yes, yes!” He said impatiently. “But what else? What do you see?” Still, I had no clue what he was talking about.

“Time!” Jeppe exclaimed, “It will take time!  Bacteria are living organisms and it will take time to achieve the reduction of the nitrate.  Think about fermentation – it takes time!”

“What is the faster process? Dry curing or mild curing”, he asked.

That one I gladly knew. “Mild curing!” “Correct!”, he exclaimed. “Correct!” “But why?”

Suddenly Minette and I saw what he was driving at! She answered, “The time it takes the bacteria to convert the nitrate to nitrite . . .” “And what?”, he spurred her on. “What does this points to?” “What is doing the curing?'”

I suddenly saw it and a bolt of energy hit me. “It is the nitrite doing the curing and not the nitrate!” “The time difference between the old system of dry curing using nitrates and the new system which re-uses old brine is that in the old brine, the nitrate has been converted to nitrite! This is the power of the old brine! This is why it is so much faster!”

His secretary walked in at that moment announcing that his next appointment is there. “Oh, let him wait”, Uncle Jeppe exclaimed! “”Get us coffee! There is some hope for South Africa after all!” He gave me an enthusiastic slap on my back!

“Exactly!”

“Exactly!”

He walked around his desk and sat down. “I did not discuss this with Polenski but I saw it immediately! If I told him the entire Germany would convert to mild curing and Denmark’s competitive edge would be lost.  I sat there thinking of what Andreas told me. That I will find that my greatest discovery won’t be the mild curing process, but why it works the way it works. The “why?” And “how?” of curing. I was exhilarated!

Tristan, I know you love biology and the natural sciences. This is why I address this mail to you and I have no worry that I become too technical. The reaction sequence and mode are beautiful. I can honestly say that I am completely in love with the natural world and my fellow explorer in all this is Minette!

I now want to know every element present in the brine, and its exact function. What is the chemistry in the meat itself?  How does curing happen? When we know this, we will be in a position to manipulate the process and improve it.

A Bigger Point

Jeppe had something very important to share with Minette and I that flows the discovery of denitrifying bacteria.  Right at the start of this journey, I realised that what we are discovering is much more than simply learning how to cure bacon.  This journey back to the lands of my forefathers is a big deal! In a way, it was already an end in itself for me. History and context if of enormous importance. Our lives are never in isolation. We come from the soil of Denmark and the fact that it is here where we find the answers is hugely important to me!

Bacon is in the center of scientific research of Europe, America, and the United Kingdom, and the combined scientific focus of these countries are directed at unlocking its secrets which are bound up with that of agriculture and superior technology in warfare.  Besides these, there are many human stories that are part of the story of bacon.  Real people who each contribute small parts of a very large jigsaw puzzle that is coming together.  They teach us about life. We do not live in isolation, my son! What I am recounting is not fiction! I tell you real stories of real people! Jeppe taught us that life is more than bacon.  The journey of discovering its secrets are far more important than just the factory we will one day set up.

Within the same year of publishing a major paper on denitrifying bacteria by Gabriel and Ulysse, tragedy struck.  The young Gabriel Dupetit ended his own life.  He traveled to the Italian city of Savano and booked in at the Albergo Svizzero under the false name, Gaston Denault.  Overcome by anxiety of all sorts, on the evening of 28 December 1886, he injected poison into himself.  He was discovered, barely alive and despite many efforts to save his life, he passed away on the morning of the 29th.  He left a note in French explaining some of his worries.  The use of the false name was done to hide his identity and spare his parents’ embarrassment.  Both Minette and I sat silently as Jeppe told us what had happened.

Minette had to fight away the tears.  We are both humbled and saddened by this story.  His work directly contributes to our quest of understanding bacon and still, his death reminds me that our lives are bigger than our goals and dreams.  Despite our ambitions, we must pay attention to each sunset and sunrise and never make the mistake of thinking that achieving goals define us.  Francois Blanc got it right.  He found fulfillment in small things, despite his success.  His success does not define him.  He finds the greatest fulfillment in the ordinary in life.  In this, bacon and life become inseparable and I am never sure when I stop learning about the one and start learning about the other.

Maybe, I wonder, the biggest and most important act of his life was the drives he took through the countryside with his wife. His relationship with his sons and the evenings that Uncle Jeppe and Dr. Polenski spent with him.  Uncle Jeppe told me how much he enjoys it!

We see glimmers of the full mechanisms of curing brought about by microorganisms, nitrate, nitrite, salt, sugar, and spices.  I would love to know much more to take back to Cape Town a curing method where curing can be done in a shorter time than 19 days, yielding a product that tastes just as exquisite as Irish or Danish Mild Cured bacon.  I have many friends in the curing industry who would rather cut off their one hand than do anything quickly.  This is a discussion for another day.  There are those who believe that in order to cure bacon in the “right” way, one needs time, but my quest is centered around understanding a process that fits with a bacon curing plant that is capable of supplying bacon in large quantities.  We do not envisage setting up something small in Cape Town.

Even so, with all the excitement from our quest, never forget the priority of each sunset. Knowing that we are but small parts of a very big whole. That our highest achievements will be measured in whom we loved and how content we were with whatever life offers us. My heart goes out to that young man and his parents! Imagine his final moments – alone, in a foreign land!

With these, my dear son, it is time for me to go. Know that, no matter what, my love for you and your sister is eternal. You guys will be my last thought when I die. The vision of you and my dear Minette! You guys are my entire world and as certain as I write these words today, one day you will read it and I will be gone. Know that my life was not just about bacon, but like Gabriel Dupetit, it is also about the art of living! Imitate me, my son! Live!!

Be well, my boy!  Take care of Lauren!

Lots of love from Denmark,

Your Dad.


green-previous green-home-icon green-next


(c) eben van tonder

Bacon & the art of living” in bookform

Stay in touch

Like our Facebook page and see the next post. Like, share, comment, contribute!

Bacon and the art of living

Promote your Page too


Notes:

(1)  “St” is the abbreviation for “stone.”   Until as recent as the Second World War, the Smithfield market in London used the 8 lb to a stone measurement. (hansard.millbanksystems)

The stone weight differed according to the commodity weighed.  Animals were weighed in 14 lb to a stone before they were slaughtered and once slaughtered, the carcass and meat would be sold in 8 lb to a stone measure.  Spices were also sold in 8 lb to a stone weights.  (Newman, 1954)

(2)  A survey was done in the US in the 1950’s to determine the most common brine mix used for curing bacon at the time. (Dunker and Hankins, 1951: 6) Even though it is 60 years after this letter was presumably written, I include it since methods and formulations in those days seemed to have a longevity that easily would have remained all those years later.  The survey was also done among farmers, in an environment where innovation are notoriously slow.

(3)  How salty was this bacon in reality?  The recipe is used by most US farmers by the 1950’s was 10 lb (4.54kg) salt, 3 lb (1.36kg) of brown suger, 6 ounces (170g) of black pepper and 3 ounces (85g) of saltpeter.  10 pounds (4.54kg) of this mixture per 100 pounds (45.36kg) of meat.

The total weight of dry spices is therefore 6.07kg of which salt is 74% or  3.4kg.  This was applied at a ratio of 3.4kg salt per 45kg of meat or 1 kg salt per 13 kg of meat.  Not all salt was absorbed into the meat, but the meat was regularly re-salted over the curing period which means that this ratio would be applied many times over before curing was complete.  Compare this with the salt ratio targeted by us in 2016 of 25g per 1kg final product, this means that the bacon made with this recipe would be extremely salty, irrespective of the use of sugar to reduce the salty taste.  The bacon would have to be soaked in water first to draw out some of the excess salt, before consumed.

(4)  Eduard Polenske (1849-1911) was born in Ratzebuhr, Neustettin, Pommern, Germany on 27 Aug 1849 to Samuel G Polenski and Rosina Schultz. Eduard Reinhold Polenski married to Möller. He passed away in 1911 in Berlin, Germany. (Ancestry.  Polenske)

The Imperial Health Office was established on 16 July 1876 in Berlin,focussing on the medical and veterinary industry. At first it was a division of the Reich Chancellery and from 1879, fell under the Ministry of the Interior. In 1879, the “Law concerning the marketing of food, luxury foods and commodities” was adopted, and the Imperial Health Office was tasked with the responsible for monitoring compliance with it. Established in 1900, the Reichsgesundheitsrat supported the Imperial Health Office in its tasks. (Wikipedia. Kaiserliches Gesundheitsamt)

(5)  Brine is a solution of salt in water.

(6)  Qualitative and quantitative techniques for measuring nitrite and nitrates in food has been developed in the late 1800’s.  (Deacon, M;  Rice, T;  Summerhayes, C,  2001: 235, 236).  The earliest test for nitrites is probably the Griess test.  This is a chemical analysis test which detects the presence of organic nitrite compounds. The Griess reagent relies on a diazotization reaction which was first described in 1858 by Peter Griess.

Schaus and others puts the year of the discovery by Griess as 1879.  According to him,  Griess, a German Chemist used sulfanilic acid as a reagent together with α-naphthylamine in dilute sulfuric acid.  In his first publication Griess reported the occurrence of a positive nitrite reaction with human saliva, whereas negative reactions  were consistently obtained with freshly voided urine specimen from normal individuals.   (Schaus, R; M.D. 1956:  528)

(7)   Gayon and Dupetit’s discoveries include the following:

  • they demonstrated the “antagonistic effect of heat as well as oxygen on the process.”
  • “They also showed that individual organic compounds such as sugars, oils, and alcohols could supplant complex organic materials and serve as reductants for nitrate.”
  •  In 1886 they reported on “the isolation in pure culture of two strains of denitrifying bacteria.”

(Payne, W. J..  1986)

(8)  In reality, the key to understanding the function of the utalization of the oxygen atom is understanding cell respiration.  The purpose of cell respiration is the formation of ATP.  The organism needs nutrients for respiration which is obtained from sugar, amino acids, fatty acids and an oxidizing agent (electron acceptor), oxygen (codecogseqn-9).  Now, in environments where oxygen is depleted (where the rate of oxygen consumption is higher than oxygen supply, the bacteria respire nitrate.  The nitrate serves the purpose of the terminal electron acceptor, a function which is better performed by molecular oxygen, if it is available.  It is not only nitrite that is used by microorganisms in respiration when molecular oxygen is depleted.  Other electron acceptors are sulfate, iron and manganese oxides.

(9)  Dr Ed Polenski’s findings has been published in “Arbeiten aus dem Kaiserlichen Gesundheitsamte , 7. Band, Springer, Berlin 1891, S. 471–474” (http://books.google.co.za/books?id=R_YAAAAAYAAJ&pg=PA471&redir_esc=y)

References

Asheville Citizen Times (Asheville, North Carolina), 20 August 1895.  All information on Francois Blanc was from an article on page 3.

Dunker, CF and Hankins OG.  October 1951.  A survey of farm curing methods.  Circular 894. US Department of agriculture

Jones, Osman, 1933, Paper, Nitrite in cured meats, F.I.C., Analyst.

Drs. Keeton, J. T.;   Osburn, W. N.;  Hardin, M. D.;  2009.  Nathan S. Bryan3 .  A National Survey of Nitrite/ Nitrate concentration in cured meat products and non-meat foods available in retail.  Nutrition and Food Science Department, Department of Animal Science, Texas A&M, University, College Station, TX 77843; Institute of Molecular Medicine, University of Texas, Houston Health Science Center, Houston, TX 77030.

Payne, W. J..  1986.  1986: Centenary of the Isolation of Denitrifying Bacteria.

Smith, Edward.  1876. Foods. D. Appleton and Company, New York.

Schaus, R; M.D. 1956.  GRIESS’ NITRITE TEST IN DIAGNOSIS OF URINARY INFECTION,    Journal of the American Medical Association.

http://hansard.millbanksystems.com/commons/1938/mar/01/meat-prices

Picture References:

A cargo ship at the Cape:  https://en.wikipedia.org/wiki/Economy_of_the_Western_Cape

Chapter 08.03 Minette, the Cape Slaves, the Witels and Nitrogen

Bacon & the Art of Living 1

Introduction to Bacon & the Art of Living

The quest to understand how great bacon is made takes me around the world and through epic adventures. I tell the story by changing the setting from the 2000s to the late 1800s when much of the technology behind bacon curing was unraveled. I weave into the mix beautiful stories of Cape Town and use mostly my family as the other characters besides me and Oscar and Uncle Jeppe from Denmark, a good friend and someone to whom I owe much gratitude! A man who knows bacon! Most other characters have a real basis in history and I describe actual events and personal experiences set in a different historical context.

The cast I use to mould the story into is letters I wrote home during my travels.


Minette, the Cape Slaves, the Witels and Nitrogen

Copenhagen, May 1891

Last week Andreas tells me that we will not be doing anything the following Saturday.  Uncle Jeppe visits Liverpool once a year.  He is returning to Copenhagen and Andreas and his dad asked me to welcome him to the harbour.  I am always delighted to spend time with the old man!  I was looking forward to the train ride into the city with him.  I was bright and early at the harbour and when the English steamer docked, I eagerly looked through the crowd to see him.

Minette

The crowd was milling around with people greeting and porters busily hauling luggage to waiting horse carts and some, off to board the train. I scanned the milling crowd and my eye caught sight of a beautiful young lady, a bit younger than me.  She looked a lost with no porter by her side, carrying two leather travel bags, too heavy for her.  My glance passed over her, looking for Uncle Jeppe.  My gaze almost immediately returned to her.  There were two reasons for this.   She was beautiful and there was something familiar about her!  She looked up and right at me and suddenly I recognized her.  “Minette!!”

My heart jumped with excitement!  At the same time as I recognised her, she saw me and a broad smile graced her beautiful face!  “Minette!” I blurted out!  The last person on earth I was expecting and the one person that I most dearly want to see!  “Minette!” I said again, this time a lot softer as I riched her after a few large strides to get to her.  “Minette, what on earth!?” I said again.  She dropped her bags and we embraced!  “I almost did not recognise you with your hat and your nice dress!

“What are you doing here?”  “Where are you staying?”  “Come,” I said and picked her bags up.  “I’m here to visit you,” she said and started walking with me towards the train. I was still baffled. “Two months ago Andreas wrote to me.  He invited me to visit and surprise you.”  I realised that it must have been after Andreas and my long drinking session in Copenhagen that I write to you in my last letter that he hatched his plans.  It appears that he took his lead from the many times I spoke about you in all my adventures.

Suddenly I remember that I was there to welcome Uncle Jeppe! She saw the panic in my eyes as I started looking around again.  “Uncle Jeppe is only arriving next week,” she helps me out of my misery.  “He is still in Liverpool.  The whole thing was a ruse to get you to the harbour!”

I have never been this excited to see anybody!  The last time I saw her we were sitting in Pennys Cave on Table Mountain with our friends.  Minette and I love exploring the mountains and valleys around Cape Town and we would do this as often as we get an opportunity.

Drosters Gat

It was on one of our hikes that we discovered the cave on Kogel Bay, Dappa se Gat, where I think the slaves lived who took in the pigs from the Colenbrook which became known as the Kolbroek pigs.  We discovered the Cave when we hiked from Hermanus to Cape Town, one year.  We started at Hangklip at Pringle Bay close to Hermanus where my younger brother, Elmar, Juanita and their two kids live.

I started reading Alexander Von Humboldt’s work when I was still a small boy and was captivated by the destruction brought about by European colonists.  In my imagination, I would accompany Von Humboldt on his travels across South America and the Russian Steppe.  I got intensely interested in the physiology of the human and animal body when I read about his work with Guthrie.  The sense of adventure and the need to explore partly come from stories such as his.

Across the decades that separate our lives, Von Humboldt mentored me.  If I had enough money to buy a book I wanted, but not enough for food for the day, I would buy the book.  Choices between using my savings from my Transport work to buy a house in Cape Town or to either travel to Europe to learn how to make bacon or go on an expedition to the Magaliesberg Mountains always ended up on whatever would teach me the most and be the greatest adventure.  Buying a house never was a priority!

During my time as a Transport Rider across the vast open spaces of Southern Africa, I witnessed the destruction that people bring to nature and each other first hand.  I visited old Tswanruins at the Vaal River between Paryd and Potchefstroom and at Hartebeespoort.  I hiked through these massive Tswana and Sotho cities at the Suikerbosrand and in Johannesburg on the farm of Sarel Marais. The cities of the Tswana and the Sotho were decimated by  Mzilikazi Khumalo, a Southern African king who founded the Mthwakazi Kingdom now known as Matabeleland.  It was precisely because Minette and I shared these priorities and values that I was drawn to her.  Well, apart from her good looks and inquisitive personality.

The existence of slavery and the wholesale destruction of our natural world went hand in hand.  A period followed where I had an intense interest in slavery and the knowledge I gained allowed me to understand our land better.   The Kolbroek pigs are an excellent example.

Minette and I knew there was another famous cave where a community of runaway slaves lived.  Between Pringle Bay and Rooiels, much closer to the water’s edge, legend has it that these poor people discovered a cave that can house them and hide them from the slave masters.  The entrance is very narrow and like Dappa se Gat, one can enter it only during low tide.  It is accessible from the sea.  It became known as Drostres gat (cave). From Rooi Els to Kogel Bay is a short distance.

We rode out to Pringle Bay at Cape Hangklip.  It is always good to rely on local knowledge when looking for these things.  Locals directed us to a restaurant and bar called Miems.  The owners are Morris and Kerneels.  Morris, a tall and well-built man, is a trained geologist who worked in Johannesburg mines for many years.  Kerneels, his partner and he traveled to Ireland a few years ago in a stunning reversal of where people go to find their fortunes.  Where most Europeans are hoping for the new world to provide a living, Morris and Kirneels went to Ireland where they worked till they saved enough to start Miems at Cape Hangklip.  He too read the account of Green about Drostersgate (Drosters cave) between Pringle Bay and Rooiels.

An old farmer wrote that the Gat (Cave) can only be accessed at low tide and climbing down down a precipice with a rope. A neighbor and he went in with candles for about eighty yards. He remembers that it was dark and damp and one could see bones of large game animals and cattle still scattered across the cave floor. They also found trunks of melkhout trees, used to make fire to roast the meat.  He wrote that there are graves of “strandlopers” (scavengers) around the general location of the cave.  Morris has been to the exact location more than once and says that he is not able to get into the cave.   The opening is too small for such a big man.  He tried to access it from the sea without any success.   It does not surprise me that the salves managed to get into areas where he could not. By all accounts, they were gaunt and small.

Minette and I looked for it and when we could not find it, we returned to Miems for another few pints.  Back at the bar that evening, it seemed as if everybody had a cave story where runaway slaves hid out.

It is immediately obvious that finding food would have been a massive challenge.  There are accounts of such slaves wandering around on Table Mountain only to eventually returned to Cape Town and hand themselves over to authorities to face the cruelest punishment rather than dying of starvation.  It is this reality that made the feat of young Joshua Penny even more remarkable who stayed for an extended time period on Table Mountain.

The only place on the mountain that was regularly inhabited by these most unfortunate people was an overhang up Platteklip Gorge on Table Mountain.  There are accounts of slaves who lived up this gorge taking live cattle up.  Anyone who ever hiked up there will know that taking a cow or an ox up there must have been extremely arduous.  The cave can still be seen to this day up the oldest recorded route up Table Mountain.

The many accounts of the struggle for food of the slaves and the fact that keeping livestock was a strategy they used to sustain themselves lend tremendous credence to my theory about the fate of the Kolbroek pigs.  In the Hangklip area, there are a number of other well-known legends of runaway slaves-communities hiding away in caves.  The area is mysterious and to this day, sparsely populated.  An old man once told me, there are many ghosts in these mountains!

We hiked from Rooi Els to Kogel Bay when we first discovered Dappa se Gat.  We just passed Kogel bay and I got to the stretch of beach, strewn with round boulders, resembling cannon shot when I saw the cave.  Dappa se gat!  The cave is a couple of hundred meters deep and during high tide it is inaccessible.  I sat in front of the cave and tried to imagine what it must have been like for the runaway slaves.

My mind effortlessly wondered to the sinking of the Colebrook and the fate of the pigs that swam ashore.  So it happened that not even on Minette and my wildest adventures were we ever very far from bacon, hams, salamis, and pigs.

The Witels

Another favourate site of ours is the Witels River.  Between the Matroosberg and the Winterhoek Mountains is the town of Ceres that officially existed since 1854.  A pass was constructed called, Michells Pass which follows the route to Ceres next to the Bree River.  Where the Witels flows into the Bree River is an open “outspan” area which is clearly seen on the West bank of the river.  I am sure that the trekkers spent a couple of nights here, feeding and resting their cattle before taking on the pass.  

The first pass was built by Jan Mostert and was called Mostert’s Hoek Pass (1765).  Jan was one of the first settlers to settle on Ceres’ side of Tulbagh.  The pass was a very rugged 3kms.  The road was so bad that wagons had to be dismantled and sections crossed on foot, the cargo and the wagons strapped to the backs of oxen.

Charles Michell surveyed Mostert’s Hoek Pass in 1830 to improve it.  Andrew Geddes-Bain constructed the new pass in 1846, with the assistance of 240 convicts.  The Bree River runs all the way into the Warm Bokkeveld. The pass effectively reduced the travel time from Cape Town to Beaufort West from 20 to 12 days.  It was almost possible to do the route with a horse-drawn carriage.

dwars, bree and witels.png

On my way to Johannesburg through Kimberly, I stayed at the Winterberg Mountain Inn.  It was the main road between the Cape and Kimberley. It was formerly known as Mill & Oaks Country Inn.  The restaurant is built on the foundations of an olf wheat-mill dating from the 1800s.  It was called the Ceres Meul (Mill).  It is not known exactly when the Mill was built.  Probably in the late-1700s by the first European settlers.  The Inn is the kind of place that I prefer.  Steeped in history, enough ghosts to chase, legends to unravel, exceptional food and great company!

One of Minette’s banking clients told her about the Witsels river; that it runs down towards the Bree River from the southern Peaks of the Hex River mountains.  The best approach is through the Waaihoek Kloof.  The man who first identified the route will forever remain nameless in accordance with his own wishes. The next time I stayed at the Winterberg Mountain Inn, I asked the locals if they know the access route. They explained to me in great detail.  When I got back to Cape Town a few months later, I immediately looked Minette up at the Bank and the plan was set out for a legendary hike.

IMG_3238

One ascends a mountain and through a very precarious route, access the river.  Once you are in the river, there are very few ways out.  The cliffs are for the most part right next to the river, forcing you to either swim or jump from boulder to boulder.  At certain places, the cliffs fold over the river creating long stretches that you swim through caves, following the flow of the river.  Next to the river, there are small stretches that resemble sea sand.  It created the most amazing places to sleep.  To go up the mountain, into the Witels River and out at the Bree River takes around 5 days.  Some young people are able to cover the distance in a day provided that they don’t take anything heavy in their backpacks.  The best Minette and I did was 2 days from start to finish, but the river was very full and progress painfully slow.  The Witels river has become a spiritual pilgrimage for us and ranks as one of our most favourate routes on this bountiful earth!

One of the Witels hikes it started raining.  Rain down the Witels can be life-threatening if it rains higher up in the catchment area and the river comes down.  The force of the river carries large boulders from higher up, downstream and the force is such that if one would be in the water when this happens, chances for survival are slim to zero.  We moved our backpacks higher up the sandbank and as close to the cliff as we could get a comfortable place to lay down.  I was trying to get Minette’s mind off the raging river!

Nitrogen

I was laying under my sleeping bag.  Minette was getting her overnight spot comfortable for the night; painstakingly removing the rocks that would start to irritating her once the initial tiredness has worn off.  I asked her if she knew what air was made off.  “Oxigen and of course. . . ”  “Nitrogen!” she answered.

“Correct! It was discovered separately in 1772, by the Scottsman, Daniel Rutherford and in the early 1770s by a Swiss, Carl Scheele.  Rutherford called it “noxious air” and Scheele, “foul air.”” I replied.

I briefly explained for fear that I would bore her, “It exists as a gas and comprises of two nitrogen atoms, joined to form one gas molecule.  They are split apart by something of high energy such as a lightning strike.  This leaves the two atoms free to react with other matter floating around it.

Nitric Oxide

“One of these elements floating around in the atmosphere is oxygen.  Nitrogen reacts with oxygen and forms nitrogen monoxide (NO).  Nitrogen monoxide, a colourless gas, is an extremely important compound.  It is also called nitric oxide or nitrogen oxide.  The nitric oxide is heated from the energy from the lightning flash that created it.”

The drizzle was coming down softly.  Minette finished nesting and I got enough energy together to build a fine.  I cleared a small sandy patch at my feet and with a twig I wrote the simple chemical reaction in the sand.

N2 (g) + O2 (g)  lightning —> 2NO (g)

“There are different sources of Nitric Oxide.  Very important one which I will tell you about later.”

Nitrogen Dioxide

“As it cools down, it reacts further with the oxygen molecules around it to form nitrogen dioxide.  Nitric Oxide is one nitrogen atom attached to one oxygen atom.  It now combines with another oxygen atom and forms nitrogen dioxide, a poisonous, brown, acidic, pungent gas.  There is another important molecule that exists in our atmosphere as a gas namely ozone which is three oxygen atoms that combined into a molecule.  Nitrogen mostly reacts with ozone to form nitrogen dioxide.”

“Like nitrogen, oxygen occurs as two oxygen atoms, bound in one molecule.  Ultra-violet light and lightning cause the two tightly bound oxygen atoms to separate and react, either with other single-atom oxygen molecules or with more stable two-atom oxygen molecules.  In the latter case, three oxygen atoms are bound into one molecule (O3).  It is not very stable and quickly breaks down into one oxygen atom and or two oxygen atom molecules or it reacts with nitric oxide to form nitrogen dioxide.”

I wipe my previous simple formulation from the sand to write another very simple one.

NO (g) 1/2O2 (g) —> NO2 (g)

Nitric Acid

“Nitrogen Dioxide (NO2) reacts with more oxygen and raindrops.  Water is H2O.  The two oxygen atoms of nitrogen dioxide combine with the one from water to form 3 oxygen atoms bound together.  There is still only one Nitrogen atom giving us NO3 or nitrate.  There is now still one Hydrogen atom left and it combines with the nitrate to form nitric acid (HNO3).  Nitric acid falls to earth and enters the soil and serves as nutrients for plants.  Old writers  called nitric acid (HNO3) aqua fortis or spirit of niter.”

I clear the sand at my feet for a third equation.

3NO2 (g) + H2O —> 2HNO3 (aq) + NO (g)

“Nitric acid is highly reactive and combines with salts in the soil.  The Hydrogen atom is replaced by a calcium, potassium or sodium atom, converting it to a nitrate salt.  This salt is called saltpeter. The extreme importance of this is that it is plant food.  Saltpeter is used today for gunpowder, fertiliser and to cure meat.”

“Fascinating,” Minette said a bit sarcastic.  I did not notice that she started cooking supper and I can help.  She hands me an onion to peel.  “Saltpeter!”, she said.  I thought its the sweat from a horse.  My dad always said that we ride the horses till the white saltpeter is running down his neck!

I smiled because she did not know how completely correct she was!  The few raindrops that fell stopped.  The sound of the rushing river and the peace of the mountains transcends everything.  I looked at her in the glow of the fire and was struck by her beauty!

The Witels became one of those important cathedrals in our life!  The first time I came down the Witels, it arrested my soul and I fell in love with it.  Unspoiled! If you are thirsty, you drop into the water and drink directly from the river.  The only company for almost the entire length if the baboons on the cliffs.  The place I gave my first lecture on nitrogen and the place where I first noticed how beautiful Minette is.  It was the start of the two great loves of my life.  Unraveling the technical reasons why saltpeter cures meat and Minette!

How much I would love to have you guys here with us.  Today, as they say in the Bible, “my joy is complete” with Minette here with me.  What I was feeling on the Witels and in Penny’s Cave is now undeniable.  I have very strong feelings for this amazing woman who traveled halfway around the world to see me.

When we got home, Andreas and his family provided Minette with her own room.  I was overjoyed that she is staying with us.  That evening around the supper table we told our stories, including my nitrogen lecture on the Witels.  Andreas slapped me on the shoulder when he walked past me.  Let Minette join you tomorrow for Uncle Jeppes’ lunchtime lecture.  He is going to start with “satltpeter” and if you and Minettes’ interest in it, you will both find it fascinating.”

We had the most amazing dinner!

Well, kids, its time to go to bed.  A great week is waiting for me with Minette here.  Next weekend I will write and tell you all about it!

Lots of love,

Dad


green-previous  green-home-icon    green-next


(c) eben van tonder

Bacon & the art of living” in bookform

Stay in touch

Like our Facebook page and see the next post. Like, share, comment, contribute!

Bacon and the art of living

Promote your Page too


References

Mechanisms of meat curing – the important nitrogen compounds

Chapter 08.02 – The Danish Cooperative and Saltpeter

Bacon & the Art of Living 1

Introduction to Bacon & the Art of Living

The quest to understand how great bacon is made takes me around the world and through epic adventures. I tell the story by changing the setting from the 2000s to late 1800 when much of the technology behind bacon curing was unraveled. I weave into the mix beautiful stories of Cape Town and use mostly my family as the other characters besides me and Oscar and Uncle Jeppe from Denmark, a good friend and someone to whom I owe much gratitude! A man who knows bacon! Most other characters have a real basis in history and I describe actual events and personal experiences set in a different historical context.

The cast I use to mould the story into is letters I wrote home during my travels.


The Danish Cooperatives and Saltpeter

Copenhagen, March 1891

IMG-20111009-00023.jpg

My dear Minette,

It is Sunday afternoon.  I slept most of the morning.  I am excited and refreshed.  I know you are here in spirit. Life has turned out much more insanely exciting than I could ever have hoped for. The entire thing is a grand adventure of discovery.  I could never dream that trying to unlock the secrets of bacon would be as insanely exciting as it all turned out to be.  Hopefully, you will receive the letter I wrote yesterday before you get this one.  I will hold on to it and post it next Friday.

I have been wondering about meat curing for as long as I can remember.  Even as a child I tried to imagine how people discovered that dry meat lasts longer.  Initially, I believe that people ate meat raw or fermented.  Animal carcasses that are left outside will start to ferment.  Fermentation breaks the tough muscles down and the first priority of humans must have been to find ways to get tough game meat soft.  Leaving the carcass then outside or in water to protect it from preditors would have been a natural way of softening the meat.  Later, boiling the meat and roasting it over fire became other ways to soften meat or pulverizing it with a stick or a rock.

I imagine that as people soon discovered that dry meat lasts long and the wonderful benefits of salt.  Food was initially only seen as something to consume in order to fuel our bodies.  As humans developed, we started changing food into an art form.  The king or leader and people with means could now demand the best meat.  We learned that meat, like any other food, can be prepared in many different ways to improve the taste and food changed into art.  These different techniques of “softening” meat were becoming art in themselves and Sharma, medicine men and women and housewives became the custodians of this new technology.

When we make bacon, we use a technique called curing.  Cured meat is identified by three things.  The salt and saltpeter change the colour of the meat.  When an animal is killed, the meat blooms a beautiful red colour.  If you do not rub it with saltpeter, it changes to a dull brown colour.  If you, however, rub it with a mixture of salt and saltpeter, it changes the colour to a pinkish-reddish colour.  Related to the science of making good bacon, colour is the first key.

The second thing that saltpeter does is to impart a unique cured flavour to the meat.  The third characteristic of cured meat is taste.  The last one is longevity.  Cured meat lasts long outside a refrigerator and in Europe is the staple food in many countries as far as meat is concerned.

I know saltpeter is important because it imparts all three characteristics to bacon.  Let me rather say it like this.  Using Saltpeter is not the only guarantee for good bacon, but leaving it out of the salt-rub, you will never get the right colour, taste or longevity.  You have the option of drying the meat without saltpeter in which case it will also last longer, but the meat will be dry and it will not have the characteristic taste of cured meat.

In South Africa, the old Dutch farmers fused their knowledge of drying meat in the chimnies in Holland and the North European practice of using vinegar in their hams with the indigenous practice of hanging meat out in the sun and wind to dry.  I have found this to be an ancient practice among all the peoples of southern Africa that I met in my travels.

The Dutch farmers add coriander and black pepper with salt to the vinegar to create what they call biltong.  The coriander and black pepper were initially added to mask any off-flavours in case the meat did not dry quick enough and some spoiling of meat has set in. This is a good example where drying works well to preserve meat with or without saltpeter.  Saltpeter can only be left out of the recipe if vinegar is used and lots of salt.

I have always known that the secret of bacon is in saltpeter, but saltpeter is not everything that goes into the making of the best bacon on earth.  So, my quest to understand bacon starts with saltpeter.  What is it and why does it have the power to give longevity to meat, change the colour back to the colour of freshly slaughtered meat why does it give this unique taste?  These are the questions I knew I had to answer first.

Besides understanding saltpeter, our goal in Cape Town is to set up a factory and not merely making bacon for home use.  Scale changes everything.  This is a lesson I learned from very early on.  On my grandfathers’ farm, I have seen how easy it is to make the best bacon on earth if we make it for our family only.  When my dad’s bacon became famous and Dawid de Villiers Graaff placed an order with us, we made five-time more we normally do.  It was a disaster!  Everything went wrong.  We had more workers to help, but they were not trained.  We could not keep the meat cool and in the end, we had to feed most of the meat to our dogs.  Scale is difficult and the importance of the right structure of a bacon factory is something that we can not under-estimate.  Right from the word go, I came face to face with lessons pertaining to structure and ingredients and the first ingredient to look at was saltpeter!

The Spirit of the Danes

The morning was crisp and interesting.  Andreas’ dad is an impressive man.  He is very intelligent with an amazing knowledge of many things.  He gave me a lot of perspective on what Jeppe told me on Friday.  For example, how did it come about that a man of Jeppes age was exposed to learning new butchering and curing techniques?  Why was there in Denmark such a focus on continued education that people showed up for lessons by the Irish, in sufficient numbers to make a proper transfer of skills possible.  How did the most current thing about the structure of a bacon plant fit so nicely into the Danish culture?  How were the Danish people inspired to take up a new way of doing things?

It often takes a prophet to change long-held perceptions; a visionary to change entrenched positions!  An inspirational man who draws his own strength from the Divine to lift peoples gaze from their own depressed positions and onto better things.  To instill hope.  These are however not all that is needed because these are often also the qualities of an imposter and someone who destroys.  What is needed are all these qualities with a simple and effective plan to improve things.  A person who can lead people to a better and more profitable future.

Andreas’ dad told me about just such a man.  In many ways, he is the father of the agricultural miracle of Denmark.  It may sound like a boring report on men and women who lived very long ago, but the truth is that it is an inspirational story about men and women with their backs against the wall.  Who triumphed against the odds.  The man at the center of the story is N. F. S. Grundtvig.

Denmark was an impoverished nation.  They lost Schleswig-Holstein to Germany.  The soil of their lands was depleted and yielding fewer crops with every harvest.  In all of Europe, the Danish soil seemed to be the poorest.   The conditions in 1864 were dire and farmers had little hope competing with Russia and America with their crops.  They were not making money.  Apart from little diversified agriculture, there was very little money in the country.  Farmers identified dairy farming as a lucrative diversification of their economy, but they lacked the money to make their plans a reality.  The depleted soil on the farms offered little collateral for lenders to advance money against.

I wish so much that I would get every South African to hear their message.  We are a nation of faith and still, we complain as if we have no hope.  What we need in South Africa is a prophet, a visionary and a very good plan!  The plan will in all likelihood have to be built on very practical education!  It is exactly for this reason that I am here!  I need to be very clear on the plan!  To my great amazement, the bedrock of the structure of the Danish bacon factory is in the first place not on the mechanics of doing it one way as opposed to another way.  The basis of their entire system rests on an almost religious belief in the power of cooperation and education!

Grundtvig was a churchman who lived between 1783 and 1872 and was described by some as the Apostle to Denmark.  He taught that Danish people must love their own country above all, more than any other real estate on earth.  He believed that Danes must love God and trust each other; their own skill and ability to solve problems; that success will come through cooperation.  The principal way to achieve this was through education and what he called the “cultivation of the people.”  This was distilled through his concept of high school which is completely different from high school in the rest of the world.

N. F. S. Grundtvig’s high schools were initially attended by people from the age of 18 to 60 or even older and everyone in between.  Every farmer’s adult son and daughter, every farmer himself or his wife, considered it a loss not to attend High School for at least one term.  The poor and the rich paid the same small fees and lectures covered an array of interesting subjects.  Religion and nationalism were part of the course, but it never dominated the other subjects.  Men and women looked forward to high school in the same way as Americans looked forward to a trip to Europe.  What he achieved is that even more than the information that was imparted, a general method of teamwork was created which would become the basis for cooperative farming and production.  Later, men and women aged between 16 and 35 mostly attended these high schools.  Young men attended in the winter and young ladies, in the summer.  Experimental agricultural farms were set up around the schools.  The teaching was not done from textbooks, but from practice.

Cooperation

His teachings against individualism slowly but surely sowed the seeds which germinated into mutual trust and a belief that by doing things together, more can be achieved.  Directly as a result of this, in 1881/ 1882 the first cooperative dairy farm was established in Jutland.  The Danes realised that to be successful, they must find ways for their fields to yield better crops and they must develop better ways to use their crops, once harvested.  Better than selling it at depressed margins on the open market in competition with the Russians and the Americans would be to utilise it to produce commodities.  On par with a relentless focus on scientific farming practices was unprecedented cooperation.  The middle man had to eliminate.  The farmer and the salesman joined forces and discovered that by cooperating they always had “something to go on,” a phrase which became an example of the new approach.

The cooperatives were set up where every member had equal rights.  Each member of the dairy cooperative had one vote and his milk was collected every morning and the cooperative agents returned the skimmed milk.  The cows, therefore, produced butter and feed for the pigs.  Money is loaned from the bank. Each member made himself responsible for repaying the loan in accordance with the number of cows he had.  Every seven days, the members received 25% of the value of the milk they delivered to the cooperative.  Apart from selling the milk to the cooperative, the member was entitled to his shares of the profit on the sale of the produce.  The cooperative kept 25% from which running expenses were paid and the loan was repaid.

There is another reason, Andreas’ dad tells me, why the Danish system works so well.  Not only did they manage themselves, but they also elected farmers to positions of power in government.  It was not only, like the Americans, for the people, by the people, but the Danes took it one step further.  The need and most pressing priority was their agriculture and so the cooperatives elected representatives for the farmers, by the farmers to the government.  These men and women abhor profiteering so that the priority is the benefit of the many.  This hatred for large trusts and monopolies goes back to the old feudal system which was prevalent in Europe.  Peasants did not own land, but in Denmark, this changed and the peasants were allowed to own their own farms.  This gave them every stimulus and motivation to improve the small farms.  It is said that 90% of all farmland in Denmark is owned by small scale farmers.  The first revolution in Danish agriculture was ownership.

The new farm owners started protesting against rulership and land aristocracy.  They sought more political power and proper representation.  They worked out a constructive plan to break up the remaining large feudal farms and to distribute it among sons and daughters of the workers.  Farm ownership, a systematic and thorough education system and the cooperative model for farming and production all work together.  The one feeding the other and strengthening the overall agricultural experiment.  In large part, the middle man was eliminated and the few matters run by the state are done for the benefit of the farmers and not for the government to make a profit.  A good example is the railways.  Still, the Danish farmer is not a socialist.  They simply believe in cooperation who thinks in terms of self-help and are not reliant on the state for help.

As Andreas’ dad spoke, I again wished I could get him to South Africa to come and tell them how it was done in Denmark.  I know that cooperation runs much deeper than simply pooling resources.  The role of education and private ownership was the basis of the Danish miracle and I see no reason why the exact same model cant work in South Africa.  The one reason I see is how deeply distrust runs between the different peoples who call South Africa their home.

Skimmed Milk to Pork to Bacon

In Denmark, it was probably the need to find a use for the skimmed milk that gave the farmers the idea of raising pigs in the same way that the need to feed cows indoor for nine months of the year forced them into intensive farming in fodder.   Pig farming therefore directly grew out of dairy farming.  It was going well with the establishment of cooperative pig farming and the live pigs were sold to Germany.

Before 1888, Danish farmers relied on selling all their live pigs in Germany.  The Germans, in turn, produced the finest Hamburg bacon and Hams from it and it was mainly sold to England.   A disaster struck the Danish pork industry when swine fever broke out in the country in the autumn of 1887.  This halted all export of live pigs.  Exports to Germany fell from 230 000 in 1886 to only 16 000 in 1888.  One of the most insane industrial transformations followed.  In a staggering display, the Danes identified the problem,  worked out the solution and dedicated every available nation resource to solving it. The creation of large bacon curing cooperatives was born out of the need to switch from exporting live pigs to processed pork in the form of bacon and to sell it directly to the country where the Germans were selling the processed Danish pork namely England.  The project was a stunning success.  In 1887 the Danish bacon industry accounted for 230 000 live pigs and in 1895, converted from bacon production, 1 250 000 pigs.

After breeding and pig farming, the next step in great bacon production is slaughtering.  On 14 July 1887, 500 farmers from the Horsens region created the first shared abattoir.  On 22 December 1887, the first co-operative abattoir in the world, Horsens Andelssvineslagteri (Horsens’s Share Abattoir), received their first live pigs for slaughter.  In 1887 and over the next few years eight such cooperative abattoirs were set up and there is still no end in sight where it will end.  Each is in excellent running condition.  As in the case with the dairy farmers, each member of the cooperative has only one vote.  The profit of the middleman and the volumes exported for butter and bacon are determined by the cooperative.  The market price is fixed in Copenhagen on a daily basis by an impartial committee.

Every farmer in Denmark or manager of a bacon curing plant cant be a scientific person, and yet, it is important that farmers and factory managers alike know something of the science underpinning their trade.  It is here where the high school lessons play an important role because it provides a solid foundation and the government is doing the rest.  They have a system of inspectors who look after farms and factories where they do the exact calculations, for example, to show how much butter must be produced from the milk of each cow.  The reason for the inspections was that the Danish Government were required to guarantee the quality of the bacon and the butter it delivered to England, but it had the double benefit of on the one hand guarantees the quality and satisfy the English requirements and on the other hand, improved the quality by assisting the farmers and producers.

The logic of cooperation was extended into England, the largest market for Danish bacon.  Some years ago the English bacon market was being serviced for the Danes by middlemen.  The farmers organised a selling agency in England to represent them known as the Danish Bacon Company of London.  The concept was applied to many areas of the Danish economy.  Banking and buying in Denmark are likewise done cooperatively.  Every village has a cooperative store.

The farmer in Denmark also uses the state in another interesting way.  Commissions are sent abroad to study foreign methods.  It was most probably on one of these trips that the Danes came across the striking workers in Ireland whom they brought back to Denmark to teach them mild curing.  Mild curing technology that came from Ireland years earlier became the cornerstone of Danish bacon.  It was this industrialised model that allowed the Danes to become the undisputed leaders in the world bacon trade.  The Danes did exactly what we intend doing namely learning not only how the cooperative factory is set up, but also the inner workings of such a factory.  They learned this from the Irish and I intend learning it from them!  That will satisfy one of the cornerstone reasons why I am in Denmark.

Neat, Prepared, Ready

Many years ago, on one of my visits to Johannesburg, I met another chemicals traders with the name of Willie Oosthuizen.  Willie told me that wherever I am in the world, before I leave home, every morning I must ask myself, “am I ready, prepared and neat?  These are according to him, the three essentials without which nobody will be in a position to use opportunities that come our way every day.

Thinking about the Danish Bacon trade, I realise that the government ensured that when the right time came, the industry was ready, prepared and in a general position of neatness.  It is a strange thing that as we walked through this small Danish town and I saw the small but neat Danish houses, that I could see this Danish approach to life in everything.  I do not see class differences between people.  I see people from all walks of life getting together in small coffee shops at the end of the day, celebrating life and sharing stories.

I can see how my quest to unravel good bacon curing is teaching me as much about life than it is teaching me about meat.  Andreas told me something this afternoon before I retired to my room which is very curious.  He told me that I am too quick to claim that this is the end of my quest.  That simply knowing the steps of bacon curing without understanding it is not to know the steps at all.  Brief exposure to the Danish attitude towards work and cooperation and the internal mechanics of a bacon curing operation is only the beginning of my education.

We were sitting in a small coffee shop one afternoon when Andreas and I were talking about all these matters.  Nothing about the pork trade is easy!  It is one of the most wonderfully complex trades on earth!  He asked me how long I think I will have to stay before I know enough to set up our Woodys bacon plant in Cape Town.  I knew enough by now not to simply venture a guess.  “As long as it takes”, I said.  He smiled.  “There is so much to learn!”  “Stay for at least a year!”.  He then produced a pouch with salt in.  He placed it in the middle of our table.  I dipped a finger in the salt and tasted it.    I recognised it as saltpeter.  “This, he said, is the next subject.  I discussed it with Jeppe and he agrees that after the structure of the factory, understanding Saltpeter is your next priority!”

That was where our business talk ended.  The rest of the afternoon we talked about life.  What it was like growing up in Cape Town and the many different cultures that co-exist in this great city.  I shared many of my experiences with him from my transport business.  I told him the story of Joshua Penny and how, after his ordeal on table Mountain, a Danish captain gave him a job on his ship sailing for Europe.  I invited Andreas to visit us when we set the Cape Town factory up.  The evening was pleasant and I became very fond of my Danish instructor.  A great friendship was struck that would last the rest of my life.

Please give the kids all my love and to our dear parents.  Please give them both my letters to read before you sent it on to Oscar, James, and Will.  I will write Dawie Hyman, David de Villiers Graaff, and Uncle Jakobus separately.

I miss you dearly!

Eben

——————

Photos from Chris Speedy and my visit to Denmark in 2011 when Andreas Østergaard introduced us to the science of bacon production.  Chris was a master, but as for me, I knew nothing! 🙂


green-previous  green-home-icon    green-next


(c) eben van tonder

Bacon & the art of living” in bookform

Stay in touch

Like our Facebook page and see the next post. Like, share, comment, contribute!

Bacon and the art of living

Promote your Page too

Bacon Curing, a Historical Review

Detroit Free Press (Detroit, Michigan) 7 October 1906, p 60.  From The Little Kingdom at the Mouth of the baltic Great Nations May Learn How to Build Up a Trade in Dairy and Meat Products.

Ellsworth County Leader (Elsworth, Kansas) 18 December 1919, p 2.

The Mother Brine

Tank Curing came from Ireland

The Yazoo Herald (Yazoo City, Mississippi), 7 November 1914, p 2, from the article, Agriculture in Denmark.