Chapter 08.09 David Graaff’s Armour – A Tale of Two Legends

Bacon & the Art of Living 1

Introduction to Bacon & the Art of Living

The quest to understand how great bacon is made takes me around the world and through epic adventures. I tell the story by changing the setting from the 2000s to the late 1800s when much of the technology behind bacon curing was unraveled. I weave into the mix beautiful stories of Cape Town and use mostly my family as the other characters besides me and Oscar and Uncle Jeppe from Denmark, a good friend and someone to whom I owe much gratitude! A man who knows bacon! Most other characters have a real basis in history and I describe actual events and personal experiences set in a different historical context.

The cast I use to mould the story into is letters I wrote home during my travels.


David Graaff’s Armour – A Tale of Two Legends

November 1891

Dear Tristan and Lauren,

Copenhagen continues to enchant us!  Long afternoon walks.  The many coffee shops.  The friendly people.  Denmark is turning into quite an education!  Minette and I had the most unexpected suprise.A completely unexpected visit from our friend, David de Villiers-Graaff. It is a sad reunion as we still mourn the passing of Uncle Jacobus Combrinck last year.  David is on his way to the United States and decided to look in on us to see my progress.

He was regal in his appearance from the moment he stepped ashore off the streamliner. It is only fitting since he is not only in his second term as honourable mayor of Cape Town, but is now also a member of the Cape Colony’s legislative council in the place of Jacobus after his sad passing. (The Colonies and Indian, 10 October 1891, p11) David managed to accommodate a short visit to Denmark en route to Chicago for the World Exposition. (1) (2)

The_Inter_Ocean_Mon__Apr_11__1892_
Drawing of David Graaff in his mayoral robes. The drawing appeared in a newspaper in Chicago on 11 April 1892 when he was interviewed at the World Exposition.

Our friend changed. He has always been serious and driven. There is, however, presently a confidence and focus in him – an intensity than I have never seen before. We are honoured for the few days we have in Copenhagen. (2)

The most fascinating tale is told by David about how it happened in the mid-1880s that he visited Chicago for the first time. On that trip, he met Phil (Philip) Armour. It had a profound impact on him. In many respects, I can see it working out in his ambitions. Drive is something we are born with. David always had a will to do things and energy. Mentors give direction to our drive. Phil Armour gave David a purpose and ambitions for Combrinck & Co. and for the City of Cape Town alike.

The Legendary Phil Armour

Phil is a self-made millionaire who is credited for pioneering the production-line processing by setting up a disassembly line in his enormous meatpacking plant in Chicago. He is the actual inventor of the production line and not Henry Ford as is widely reported. (9) David tells me that last year (1890) Phil slaughtered more pigs than the combined total of all Cincinnati packers. (Horowitz, R., 2006: 50)

This is interesting because Phil (an experienced commodity trader) and his business partner, John Plankinton (an experienced butcher), created the Armour Packing plant in Chicago in the tradition of the Cincinnati packing houses which dominated the pork packing industry until Chicago became the centre of pork processing universe in the USA and wash correctly described as “the hog butcher for the world.” (Horowitz, R., 2006: 49, 50)

It occurred to me that this was a special and important development. Phil, like many of the great packers in Cincinnati (Horowitz, R., 2006: 49, 50) was not a butcher but a trader and a businessman. This seemed to have afforded him the benefit of viewing the pork trade not as an art to be mastered by himself, but as a platform to trade in. Here he is able to anticipate supply and demand, price fluctuations, business structure, and processes in contrast with the German Master Butcher who is a tradesman, narrowly focused on his trade.

The structure of Jeppe’s bacon plant in Denmark is styled after the innovation of Phillip Armour. Phil is called the Napoleon of the Chicago capitalists, the baron of butchers, the king of pork packing and grain-shipping leader of the United States. It is reported that he has an establishment in every city in the USA and his agents are at work for him in every part of the globe. His daily updates come through telegraphs, telex, and telegram. (The Saint Paul Daily Globe, 10 May 1896, p2) His reach is global. Stretching from the “wheat fields of Russia to the grain bearing plains of North India and the markets of Australia and Europe.” Every morning he looks at the globe. Where his products will be in demand and where prices will rise and fall. (The Saint Paul Daily Globe, 10 May 1896, p2) It was no doubt this global view that brought his agents to South Africa where they met David de Villiers-Graaff. (2) (5)

Armour – the Applied of Refrigeration to Meatpacking

By now you should have a firm grasp of the role of nitrates and nitrites in meat curing.  I suspect that Phi was involved in testing nitrites in meat curing long before it was legal to do so in the USA.  This is, however, not his biggest contribution to the trade. Apart from pioneering the production line, Phil’s greatest contribution to meatpacking and processing is the incorporation of refrigeration into the meatpacking plant which allows for curing and packing of meat all year round.

In Britain, the Harris family was responsible for the construction of the first ice house for bacon curing in their High Street factory in Calne in 1856. Jeppe reckons that this is the first time in the world when ice was used to make year-round curing possible. It may or may not be true since ice houses or cellars were used in Cincinnati long before 1856. It is entirely possible that George Harris, who brought the idea back from the USA to England, may have seen ice-cooling in use precisely for bacon curing in the USA. It probably developed very informally as private landowners created ice houses to keep perishables from going bad. Phil may have had just such an ice house on his own property. However the inspiration came to him, he is credited for the incorporation of large scale refrigeration into meatpacking. (Encyclopedia. Chicago history and British History)

During the time when Phil brought refrigeration to meatpacking, Gustavus Swift came to Chicago to ship cattle and developed a way to send fresh-chilled beef in ice-cooled railroad cars all the way to the East Coast. The railroads could not keep up with the supply of refrigerated cars and Phil and other large packers build their own cars and leased them to the railroads. (Louise Carroll Wade. Encyclopedia Chicago History. Meat Packing)

Armour refrigeration car
Armour refrigeration car. Armour had at one point 12 000 refrigerated cars in use across the USA (americanurbex.com)

Three big meatpackers would become legendary. They were Philip Armour, Gustavus Swift, and Nelson Morris. (3)  David was inspired by this and did exactly the same in South Africa when he built his own refrigerated cars.

Armour’s Agents in South Africa

It was an agent of Phil Armour who visited Cape Town in the mid-1880s and called on the largest butchery in town, Combrinck & Co. This visit to South Africa was in response to the discovery of diamond in Kimberly and the goldfields in Johannesburg. (5)  Diamonds were discovered in 1867 by a 15-year-old boy, Erasmus Jacobs, near Hopetown on the Orange River. (6)

Gold was discovered in South Africa in 1884 by Jan Gerrit Bantjies on the farm Vogelstruisfontein. The main gold reef was discovered by George Harrison on the farm Langlaagte in July 1886. (5) (SA History. Discovery Gold)

Phil Armour knew exactly what would follow these discoveries. He made his money in the Californian gold rush as a young man, not from mining claims but by capitalizing on peripheral industries that developed. He started a business in California, employing out-of-work miners to construct sluices, which controlled the waters that flowed through the mined rivers. By the time he turned 24, he had a successful business that earned him enough money to move away from California and start his next venture.

Phil saw what opportunity would follow the discovery of gold and diamonds in South Africa and true to his nature, he investigated the opportunity. He also knew that as the states in South Africa develop, so would our importance as a grain and maize producer. He had many reasons to be very interested in the mid-1880s in developments in the sub-continent.

Mentor – Protégé

225px-Philip_D_Armour_in_the_1880s
Phil D Armour, 1880s

Whatever the exact reason was behind the visit of Armour’s agents to the Cape Colony, at Combrinck & Co they met the man who has been in charge since 1881 (Dommisse, E, 2011: 31), the young David de Villiers-Graaff. A bright-eyed young man with black hair and a distinct black moustache.

David was born with a drive and loads of passion. He had the resources of a successful business behind him which gave him the means. What he now had was an opportunity to be exposed to the world and take Combrick & Co. further and create his own legacy. This was provided by Phil Armour and started with an invitation to Chicago! (2) (4)

David spoke at great lengths about this first trip to Chicago and the meeting with Mr. Armour in his cage-like office from where he manages his considerable international interests. (the cage-like office is described in The Saint Paul Daily Globe, 10 May 1896, p2)

Phil invests in young minds and even though David did not explicitly state this, I can glean from what he tells me that Phil was impressed with the young leader from Cape Town. Phil showed his packing plant to David and especially the refrigeration and refrigeration cars for the railroads. (2)

Phil employes young people of character and seldom fires them. He regularly re-deploys them in other departments in the business as young people often need some time to find their feet and where their true talents lay. He would most certainly have been impressed by David.

David implemented the concept of own refrigeration cars as soon as he got back to Cape Town. He had refrigeration chambers erected for Combrinck & Co. and soon invested in his own fleet of refrigerated cars for the railways.

In a quint coffee shop close to the Abattoir in Copenhagen, I pressed David to list the characteristics of Phil Armour that inspired him most.  I was interested, not only in the mechanics of his business model but also the qualities that the man cultivated.

David was thinking intently, stroking his mustache.  “Phil is an optimist who believes in his country and in the future. (The Saint Paul Daily Globe, 10 May 1896, p2) He saw the end of the civil war, despite the many negative voices to the contrary. He capitalized on low pork prices brought about by speculation that the war would continue, bought up every pig he could get hold off and made a fortune when prices rose on the realization that peace would prevail. (7)”

“He is not scared to take on large challenges. His plans are big and bold and global. (The Saint Paul Daily Globe, 10 May 1896, p2)”

“He invests frugally in education. Mr. Armour donated funds to establish the Armour Institute of Technology in Chicago to give technical training for underprivileged boys. (8)” (Ansci. PD Armour)

A lesson that inspired David and that I take from Phil is that he believes in obtaining a thorough knowledge of any industry he gets involved in. This is why I am in Denmark and why I study as much as I can about bacon curing.

David then made an interesting observation. After supper, David started telling me about the start of Phil’s illustrious career.

Phil was brought up in Stockbridge, Madison County, in the state of New York with six brothers and two sisters. His formal schooling was not the best, but he learned far greater lessons. His mother taught him thrift, energy, the economy of time and speech, the benevolence of heart and a strong common sense. (The Inter Ocean, 7 January 1901, Page 2).

Gold was discovered in California in the spring of 1849. Phil had fallen in love with a girl and became obsessed with the idea of making a fortune on the newly discovered goldfields quickly so that he could return and claim his bride. Having secured the permission of his parents, he joined a small party and set off to the goldfields. None of the party had the means for a sea voyage and they set out on foot. A journey that lasted over six months and took them through rivers and deserts and over mountains with the usual dangers associated with such a long journey. (The Inter Ocean, 7 January 1901, Page 2) An amazing lesson I take personally from this bit of David’s story is that Phil had the respect and relationship with his parents to ask them and secondly, that his parents had the courage to allow him to go! It seems that bold parenting creates bold men!

In the goldfields, he made enough money to form the basis of his wealth. He moved away at age 24 from California to buy a grocery store and later got involved in a meatpacking venture which set him on the course of his life as we know it.

David commented that much in the life of Phil Armour resonated with him. He has never really spoken about his time as a boy on the farm in Villiersdorp to me. Last week in Denmark, he did.

David’s dad, who was a blacksmith on Villiersdorp, was not a wealthy man. There were no good roads to Villiersdorp which contributed to the general impoverished condition in the area. People were poor in possessions, but wealthy in children and in spirit. Kids were put to work from an early age on the farm. Every day’s work was undertaken with a cape made of grain bags to serve as protection against rain and cold. (Dommisse, E, 2011: 21)

As in the case of Phil’s school years, school education was not the best. What they lacked in formal education, they made up in life education. Respect was of great importance. People stood together and supported each other in times of tribulation. When an animal was butchered, people from the entire neighborhood got a meat packet. Trustworthiness in word and deed, industriousness and honesty were instilled from an early age. (Dommisse, E. 2011: 21, 22)

One afternoon Jacobus Combrinck, a respected family member and successful butcher from Cape Town, arrived on their farm Wolfhuiskloof. The custom was for the boys to help with the farm work after school and that afternoon was the 11-year old David’s turn to look after the pigs and stop them from going into the garden. “However, during the hot afternoon, he had fallen asleep under the fig tree. Next thing he knew he was being shaken awake violently while his father was shouting, “Dawie, Dawie, here you are sleeping and the pigs are in the garden!” Combrinck who had seen the whole commotion took pity on the young farm lad, … and immediately asked if he could take him to Cape Town to have him educated properly.” So it happened that the young David Graaff left their farm and moved to Cape Town where he would work during the day in Jacobus’ butchery and study at night. (Dommisse, E. 2011: 24)

David commented that Jacobus himself started to work in a butchery when he was only a teen to help his mom financially after the death of his father. David knew how to set the stage for a point he was about to make, the trait of a good communicator. He leaned back in his chair while all of us were on the edge of our seats. I have never heard him speak so candidly about his past.

“It occurred to me,” he started out, “that the best education revolves around values.” “I found great value in learning, but the values that my parents taught me have always stood me in good stead. It seems to have done the same in the life of Mr. Armour and Uncle Jacobus.”

He was ready to make his second point. He spoke thoughtfully. “A little bit of struggle never hurt anyone! Look at the journey of Mr. Armour. Jacobus and I working full days as children in butcheries. What some people see as a curse can be a blessing for others. It all depends on how you see it.” He then looked at me and said, “The fact that your dreams of a bacon factory are a difficult journey is a blessing!”

I will never forget that night. His point so eloquently made. As I have said, our friend has become a man!

Back to Chicago

David is on his way to Chicago again to meet with Phil Armour, but his focus will be on city business as he is traveling as mayor of Cape Town. He outlined what he intends to achieve at the World Fair. After hearing him talk, I can not wait to get back to see how his many plans unfold. (10)

Use Every Bit Except the Squeal

When I took David on a tour of Jeppes pork slaughtering house and abattoir the next day, David could not stop talking about the impact of Phil Armour and Gustavus Swift on pork slaughtering and how the animal is taken apart for use as primals or sides and the primals turned into bacon.

Mr Armour insisted that every part of the animal be used, contrary to the practice in many parts of the world, including in Cape Town, to dump so-called “undesirable parts of the carcass” in bodies of water, or as we do it in Cape Town, leave it on the beach in the hope that the tide will wash it away. “They devised better methods to cure pork and used lard components to make soap and candles.” (Encyclopedia Chicagohistory) Armour famously said that it is only the squeal of the pig that he does not use.

Armour’s Great Invention – the Production Line

Swift & Co. Packing House, Chicago, 1905. Photo courtesy of the Library of Congress
Swift & Co. Packing House, Chicago, 1905. Photo courtesy of the Library of Congress

It was, however, the consolidation of the ideas around the re-organization of workers that was the true genius of Phil Armour. (Thomas Petraitis. Preservation research) In a break from the concept of the German fleishmaster who process all meat, Mr. Armour’s ideas originated in a “crude form in the packinghouses of Cincinnati (when that city was known as “Porkopolis”).” “Mr. Armour organized his workers on a scale and in ways the world had never seen before. He “de-skilled” the work by dividing the processing of meat into steps that any unskilled laborer could follow.” (Thomas Petraitis. Preservation research) This approach allowed “an animal to be killed, dismembered, cleaned and dressed at extraordinary speed. Tourists came from around the world to see Midwestern packinghouses in action.” (Thomas Petraitis. Preservation research)

“The pivotal concepts of production: division of labor, mass production, standardized units of production, continuous flow, and efficiency were pioneered in these packinghouses.” (Thomas Petraitis. Preservation research) (9)

The idea originated in the packing houses in Cincinnati where it was not new technology, but this greater division of labour that allowed greater output. The task of dismembering the pig’s carcass was divided into small tasks, performed by different men. (Horowitz, R., 2006: 50) When the American landscape designer, Frederick Law Olmsted visited Cincinnati in the 1850s, “he observed in a cutting plant “a human cutting machine” consisting of no more than a “plank table, two men to lift and turn, two to wield the cleavers.” The efficiency of these men was such that “no iron cog-wheels could work with more regular motion.” As butchers separated the pig carcass into parts “attendants, aided by trucks and dumbwaiters, dispatch each to its separate destiny,” the curing cellars below where the pork was preserved before shipment.” (Horowitz, R., 2006: 51) Olmsted timed the men dismembering the pig. One carcass every 35 seconds with several parallel stations in operation, packing 15 to 20 000 hogs during the winter. (Horowitz, R., 2006: 51)

Phil achieved his output through year-round packing made possible by refrigeration, incremental technology innovation and the consolidation of the continuous process production. His engineers improve the “disassembly” line by eliminating bottlenecks. Fragmenting the butcher’s tasks and introducing rotating wheels or conveyor tracks to bring the animal to workers performing specific cuts. This alone improved efficiency by 25%. (Horowitz, R., 2006: 52) (4)

These are concepts that must become part of the life of our proposed Woody’s factory in Cape Town. Each departments’ tasks must be broken up into its smallest components. It must be logically grouped. Self-regulatory systems theory that I have been learning from Andreas dictates that a continually improving, self-organising system must contain in its operation feedback loops for the system to respond to as well as “pressure release” or self-regulatory mechanisms. I will have to focus on conditions at home and the Woodys team must create its own production systems and not try and copy what is done in Denmark, England and in Chicago where different scale exist. The approach must be the same, but the application of the principles will differ.

Building a City Based on Civic Duty

Armour Institute of Technology,  1914
Armour Institute of Technology, 1914

Another interesting result of Armours’ work which inspired David and set a course for his life is how he translated his success into transforming his environment. David would be key in transforming Cape Town just as Phil was in transforming Chicago. The “business practices that Phil pioneered had a direct impact on the skylines, not just in Chicago, but in the USA. Besides the army of workers in the packinghouses, men like Armour needed armies of clerks and managers to run their business. These employees needed office space and many of the Chicago skyscrapers were developed to house these newly created “office workers”.

It was the disdain that Chicago industrialists like Armour felt toward needless ornamentation in the workplace that led to the development of the “First Chicago School of Architecture”, and a style of building that made structure and function its primary goal. Members of the first Chicago School included Louis Sullivan, Daniel H. Burnham, John W. Root, Dankmar Adler, and William Le Baron Jenney, the “father of the American skyscraper”. (Thomas Petraitis. Preservation research)

This is a great example of the character and the spirit of Armour and Swift. The exact same direction that was given to the enthusiasm and drive of David de Villiers-Graaff. It will be wrong to credit Phil Armour entirely for David’s drive for urban development and beautifying his city. These are, after all, global movements – an almost universal drive to beautify the living environments in cities and the realisation of our collective civic responsibilities as fellow citizens on this great earth. What is certain is that David associates himself with people with this spirit and that these concepts were part of the ether that David breathed.

He no doubt was inspired by the work of the great industrialists in Chicago. This is clear from the fact that he now returns to Chicago, not as a butcher or a businessman, but as the leader of a city with grand plans to dramatically overhaul the face of Cape Town. (The Inter Ocean, Monday, 11 April 1892. Page 9 – 12) This is the protegee returning to his mentor to show him how he has grown.

Jeppe and Eben at the Meat Excellence awards in London. 3/6/2012
Jeppe and Eben at the Meat Excellence awards in London. 3/6/2012

David’s visit was concluded by a great banquette in the state hall in Denmark. Christian IX of Denmark was in attendance as were our Danish friends, Jeppe, Andreas, and Martin. I had a suit made by a tailor in the city that Jeppe manage to arrange for me. The dinner was a grand occasion. I will never forget it!  Minette looked absolutely gorgeous.  Andreas’ mom helped her to select a blue dress that suited her perfectly.

We had an amazing evening.  I could feel that my time in Denmark was coming to an end and as I started thinking back over everything that I learned it is interesting that the major theme was nitrogen.  Your December holidays are drawing close now.  Please remember to give my Oupa and Ouma all our love when you see them! I wich I can say that I am counting the days to my return, but there is still much more to learn and new countries to visit.  Off all these adventures, be assured that I will write to you often!

With lots of love!

Dad


green-previousgreen-home-icongreen-next


(c) eben van tonder

Bacon & the art of living” in bookform
Stay in touch

Like our Facebook page and see the next post. Like, share, comment, contribute!

Bacon and the art of living

Promote your Page too


Notes

(1) David Graaff was 32 years old in 1892. He was interviewed at the World Exposition by a journalist standing at the foot of one of the main trusses of the Liberal Arts and Manufacturers building, featured in the picture below. (The Inter Ocean, Monday, 11 April 1892, p12)

1024px-Chicago_expo_Manufactures_bldg Wikipedia Worlds Columbian Exposition

The Manufacturers and Liberal Arts Building seen from the South West.

(2) This visit and meeting are purely fictional. There are no records that I am aware of that Sir David Graaff ever visited Denmark. The content of the discourse between Eben, Oscar, and David relates to David Graaff’s visit to Phillip D Armour’s company in Chicago. The visit to Armour’s company took place in the mid-1880s and was one of the first locations visited by David Graaff. This is a historical fact. (Dommisse, E, 2011: 32) Everything else is likely, but at best, informed speculation. There is no evidence at my disposal indicating that agents from Philip Armour ever visited Combrinck & Co or invited David to Chicago. It is of course completely possible that a visitor or a business associate told him about Philip Armours’ packing plant.

Option 1 is then that an agent from Philip Armour visited the Cape Colony and met David Graaff. Option 2 is that one of the many people who visited the pork packing plant of Armour reported it to David who then decided to visit it. A 3rd option is that David read about it in the newspapers. In June 1882 David Graaff took out membership to the reading room of the Cape Chamber of Commerce. The reading room gave him access to a variety of publications on financial and economic issues (Dommisse, E, 2011: 38)

(3) Morris & Company and Armour & Company merged in 1925. The grandson of Morris, also named Nelson, famously survived the final flight of the Hindenburg and the fire that destroyed the airship. (Faces of the Hindenburg. Nelson Morris)

(4) The labour economist John R Commons observed, related to the disassembly line in the pork packing houses of the late 1800’s that “skill has become specialized to fit the anatomy.” (Horowitz, R., 2006: 53)

(5) The discovery of diamonds would have been of great interest to Phillip Armour. Of even greater importance would have been the discovery of gold on the Rand and the subsequent creation of Johannesburg. I have no records of Armour sending agents to Cape Town, but from everything we know about Armour and the fact that David Graaff visited Armour in the mid-’80s to investigate refrigeration and meat processing technology the tantalizing possibility exists that my theory is at least plausible.

(6) The Eureka Diamond, the first diamond to be discovered in South Africa was found near Hopetown on the Orange river in 1867. Its weight was 21.25 carats (4.250g). (Wikipedia. Eureka Diamond)

(7) David Graaff would make his fortune in part on the realization that war with England was imminent and securing supply contracts for the British army during the second Anglo-Boer war. Both Graaff and Armour were optimists, even in the midst of dark days.

(8) The institute became the Illinois Institute of Technology. (Ansci. PD Armour)

(9) “Philip Armour and his colleague Gustavus Swift were true founders of some of the great modern business practices that remain in use today around the globe. (Henry Ford later used these same principles to develop an automobile industry “assembly” line and is wrongly credited for many of Armour’s ideas.)” (Thomas Petraitis. Preservation research)

(10) This trip to Chicago actually took place and was widely reported in newspapers in the USA. The Inter Ocean ran a detailed article on this visit on Monday, 11 April 1892. Page 9 – 12.

References

Dommisse, E. 2011. First baronet of De Grendel. Tafelberg.

The Colonies and Indian, 10 October 1891, under the heading “Colonial, Indian and American News Items,” p 11.

Horowitz, R. 2006. Putting Meat on the American Table: Taste, Technology, Transformation. The John Hopkins University Press

The Inter Ocean. 7 January 1901. Page 2

The Saint Paul Daily Globe, 10 May 1896

Armour Meat Processing Plant

http://www.ansci.wisc.edu/meat_hof/2000/pdarmour.htm

http://www.british-history.ac.uk/vch/wilts/vol4/pp220-253#h3-0002

http://www.encyclopedia.chicagohistory.org/pages/804.html (Meat packing. Louise Carroll Wade)

http://facesofthehindenburg.blogspot.com/2009/01/nelson-morris.html

http://mfo.me.uk/histories/harris.php

East St. Louis, Illinois: “Hog Capital of the Nation”

http://www.sahistory.org.za/discovery-gold-1884

http://en.wikipedia.org/wiki/Built_environment#History

http://en.wikipedia.org/wiki/Eureka_Diamond

http://en.wikipedia.org/wiki/Philip_Danforth_Armour

Pictures

Figure 1: The Inter Ocean, Monday, 11 April 1892

Figure 2: Armour refrigeration car. Wikipedia.

Figure 3: Philip D Armour. https://cioccahistory.pbworks.com/w/page/34889559/Gustavus%20Swift%20and%20Philip%20Armour%20(second)

Figure 4: Swift & Co packing line. http://www.pbs.org/now/shows/250/meat-packing.html

Figure 5: http://en.wikipedia.org/wiki/Illinois_Institute_of_Technology

Figure 6: The Manufacturers and Liberal Arts Building http://en.wikipedia.org/wiki/World’s_Columbian_Exposition

 

Chapter 08.08 Von Liebig and the Theory of Proteins of Gerard Mulder.

Bacon & the Art of Living 1

Introduction to Bacon & the Art of Living

The quest to understand how great bacon is made takes me around the world and through epic adventures. I tell the story by changing the setting from the 2000s to the late 1800s when much of the technology behind bacon curing was unraveled. I weave into the mix beautiful stories of Cape Town and use mostly my family as the other characters besides me and Oscar and Uncle Jeppe from Denmark, a good friend and someone to whom I owe much gratitude! A man who knows bacon! Most other characters have a real basis in history and I describe actual events and personal experiences set in a different historical context.

The cast I use to mould the story into is letters I wrote home during my travels.


Von Liebig and the Theory of Proteins of Gerard Mulder

Copenhagen, September 1891

Dear kids,

It is the first day of autumn. Denmark is not home, but there is a beauty to this world. Copenhagen is an amazingly beautiful city. It is much smaller than I thought it would be, but it is very organised. The buildings are old and beautiful!

Andreas became a brother. He is an amazing soccer player. I can’t keep up with him, either when I play with or against him. I try to teach them to play cricket and rugby, but it is difficult. I have given up, to the great amusement of his dad (and the relief of Andreas).

Even autumn is colder than the coldest winters we have in Cape Town. As the cold sets in I miss you guys more every day. My only consolation is that Minette is here! Every week we make time to go on a long hike.  How I miss Table Mountain!  I miss my mom.  To sit at the kitchen table as she cooks one of her legendary lunches!  I miss my dad.  I miss Oscar and our crazy late-night dreaming. The fact that I learn on the one hand and do when I work in the bacon factory makes the learning more effective.

Copenhagen Harbour. The new Frihavns must impressive building was Silo warehouse on Midtermolen, built in 1892-94 by William Dahlerup
The Copenhagen harbour. The new Frihavns’ most impressive building was the Silo warehouse on Midtermolen, built in 1892-94 by William Dahlerup.

Copenhagen is not Africa!  It seems to me that all great dreams begin on horseback, on a farm, looking for stray cattle. The vlaktes of the Wes Transvaal seem so far. Like a dream.  I remember the day after we tasted the pork that we tried to cure on Oscar’s farm with the saltpeter that we bought from the Danish spice trader in Johannesburg and discovered that the pork was off. We tried to do it according to the Danish curing system as it was explained to us.  We were so disappointed!  Trudie told us that we must have done something wrong. We were sure that we did everything that the Danish guy told us.

The next day Ou Jantjie came to the house and told us that he saw some of Oscar’s cattle on Atties farm, close to the dam, nearest to Atties house. The off-tasting pork was out of our minds and we were on Poon and Lady, riding to look for the cattle.

Oscar said that Trudie is right. That we must have done something wrong and that we must learn much more.  I think he knew from the beginning how difficult it would be to take David de Villiers Graaff on when it comes to curing bacon. Oscar’s mind is fast.

I reminded him that the spice trader said that if we really want to learn how it’s done, that we must get on the next steamship leaving the Cape for Copenhagen. We decided to get everybody who will support the dream together for a meeting at his house one evening. Then we will decide.

The wind was in our faces and we had great dreams. I am learning how important those initial dreams are.  It is like building up steam pressure before the engine starts to turn the big pistons on a steamship.  If the pressure is not build up first, it will never be enough for the first “turn”. As soon as its turning, momentum takes over and the engine takes on a life of its own.  The initial dreams are the building up of pressure.

This art of curing meat has been developing over thousands of years. On the one hand, people wanted to prevent meat from spoiling and on the other hand, cured meat developed into a culinary delicacy. The key ingredient is saltpeter (1).

Jeppe and I have the best of times during lunchtime.  Since Minette arrived, it gave our lunchtime lessons a dynamic character. He would go through the relevant scientific discoveries of the previous few years, pointing out the direct application on the science and art of curing bacon.  The science and history lessons give both Minette and me enjoyment that is hard to communicate.  The Wednesday, following our visit to the University, the Chemistry Professor decided to visit us at the bacon factory.  It set the stage for another volcanic afternoon!

Justus von Liebig

He did not want to leave us “hanging in the air”, so to speak by not completing his private lecture about the development of protein metabolism events Germany and the invention of the theory of proteins.  We were ready with notebooks, pens, and inquiring minds!  The focus now shifted from the French to the German schools. Our attention shifts to the formidable scientist in the person of Justus von Liebig.  His father was a chemical manufacturer and had a small laboratory attached to his shop.  Here Justus loved performing experiments and an exceptional life was inspired.  After studying pharmacy, he received a doctorate from the University of Erlangen in Bavaria in 1822.  The Grand Duke of Hesse-Darmstadt and his ministers noticed him and funded his further studies in chemistry under Joseph-Louis Gay-Lussac in Paris between 1822 and 1824.  Gay-Lussac himself found all plant seeds “contain a principle abounding in azote.”  It was, in Paris when a meeting with Alexander von Humboldt, according to Von Liebig, set his career on the path it took.  Up to that point, it was the French chemists who were responsible for the progression of protein metabolism, but with Von Liebig, this was about to change.

Humboldt is one of my heroes and as a child, I practically committed his books to memory.   Humboldt arranged an appointment for Von Liebig at the small University of Giessen in May 1824. Liebig wrote about this meeting  that “at a larger university, or in a larger place, my energies would have been divided and dissipated, and it would have been much more difficult, perhaps impossible, to reach the goal at which I aimed.”  Applying the techniques that he learned under Gay-Lussac he changed the face of organic chemistry and became the father of agricultural chemistry. The study of protein metabolism was now firmly in the hands of the Germans.

At the University of Giessen, Liebig created the most productive school of organic chemistry in existence at the time.  He perceived that his work could be logically extended to the chemistry of the living body. In 1840 his book, “Thierchemie in Ihrer Aufwendung auf Physio logie” appeared, and an English translation of the work entitled “Animal Chemistry, or Organic Chemistry in its Applications to Physiology and Pathology” appeared 1842.  Liebig believed that the basis of protein metabolism was chemical.  Some believe this is his most important contribution to the subject.

Von Liebig was well prepared to make such a contribution on account of his training in France and his own studies in organic chemistry. The Danish Chemistry professor brought Von Liebig’s work, Animal Chemistry (1842) along and quoted liberally from us to show the various aspects of Liebigs views on protein metabolism.  He wrote (p. 40):

“… If we hold that increase of mass in the animal body, that development of its organs, and the supply of waste,—that all this is dependent on the blood, that is, on the ingredients of the blood, then only those substances can properly be called nutritious and considered as food which are capable of conversion into blood. To determine, therefore, what substances are capable of affording nourishment, it is only necessary to ascertain the composition of the food, and to compare it with that of the ingredients of the blood. Two substances require special consideration as the chief ingredients of the blood: . . . fibrine, which is identical in all its properties with muscular fibre, when the latter is purified from all foreign matters. The second principal ingredient of the blood is contained in the serum, and gives to this liquid all the properties of the white of eggs, with which it is identical. When heated, it coagulates into a white elastic mass, and the coagulating substance is called albumen. Fibrine and albumen, the chief ingredients of blood, contain, in all, seven chemical constituents, among which nitrogen, phosphorus, and sulphur are found. . . . Chemical analysis has led to the remarkable result that fibrine and albumen contain the same organic elements united in the same proportion…. In these two ingredients of blood the particles are arranged in a different order, as shown by the difference of their external properties; but in chemical composition in the ultimate proportion of the organic elements, they are identical. . . . Both albumen and fibrine, in the process of nutrition, are capable of being converted into muscular fibre, and muscular fibre is capable of being reconverted into blood. . . . All part of the animal body which have a decided shape, which form parts of organs, contain nitrogen; all of them likewise contain carbon and the elements of water. . . The chief ingredients of the blood contain nearly 17% of nitrogen and no part of an organ contains less than 17% nitrogen.”

“The most convincing experiments and observations have proved that the animal body is absolutely incapable of producing an elementary body, such as carbon or nitrogen, out of substances which do not contain it; it obviously follows, that all kinds of food fit for the production either of blood, or of cellular tissue, membranes, skin, hair, muscular fibre, etc. must contain a certain amount of nitrogen, because that element is essential to the composition of the above-named organs; because the organs cannot create it from the other elements presented to them; and, finally, because no nitrogen is absorbed from the atmosphere in the vital process.”

“The nutritive process in the carnivora is seen in its simplest form. This class of animals lives on the blood and flesh of the graminivora; but this blood and flesh is, in all its properties, identical with their own. . . . In a chemical sense, therefore, it may be said that a carnivorous animal, in supporting the vital process, consumes itself. That which serves for its nutrition is identical with those parts of its organisation which are to be renewed. The process of nutrition in graminivorous animals appears at first sight altogether different. Their digestive organs are less simple, and their food constituents consist of vegetables, the great mass of which contains but little nitrogen. … Chemical researches have shown, that all such parts of vegetables as can afford nutriment to animals contain certain constituents which are rich in nitrogen; and the most ordinary experience proves that animals require for their support and nutrition less of these parts of plants in proportion as they abound in the nitrogenised constituents. Animals cannot be fed on matters destitute of these nitrogenised constituents. . . . These nitrogenised forms of nutriment in the vegetable kingdom may be reduced to three substances, which are easily distinguished by their external characters. Two of them are soluble in water. The third is insoluble.”

He then states that he recognises “a vegetable fibrin, vegetable albumin and vegetable casein” which is similar in characteristics to these animal products.  He continues (p. 48):  “How beautifully and admirably simple, with the aid of these discoveries, appears the process of nutrition in animals, the formation of their organs, in which vitality chiefly resides! Those vegetable principles, which in animals are used to form blood, contain the chief constituents of blood, fibrine and albumen, ready formed, as far as regards their composition. . . . From what has been said, it follows that the development of the animal organism and its growth are dependent on the reception of certain principles identical with the chief constituents of blood.”

Liebig’s view on nitrogen in nutrition is summarized by himself as follows (p. 95): . . . “According to what has been laid down in the preceding pages, the substances of which the food of man is composed may be divided into two classes; into nitrogenised and non-nitrogenised. The former are capable of conversion into blood; the latter incapable of this transformation. Out of those substances which are adapted to the formation of blood are formed all the organised tissues. The other class of substances, in the normal state of health, serve to support the process of respiration. The former may be called the plastic elements of nutrition; the latter, elements of respiration. Among the former, we reckon—vegetable fibrine, vegetable albumen, vegetable caseine, animal flesh, animal blood. Among the elements of respiration in our food are—fat, starch, gum, cane sugar, grape sugar, sugar of milk, pectine, bassorine, wine, beer, spirits.”

You will see that none of Von Liebig’s views were new.  These were concepts that originated with Magendie, 25 years earlier.  Note in particular that Von Liebig did not have an inkling of the possibility of digestion and reconstruction of proteins taken in the diet.  (Munro and Allison, 1964)

One of the many productive directions of the work of Von Liebig and his students was the application of oxidizing agents (example, manganese dioxide, and chromic acid) during acid hydrolysis of proteins and in the process identifying a series of acids and aldehydes. The concept of studying the degradation products of protein originated with Von Liebig and was to play a crucial role in the next generation  (Sahyun, M. (Editor). 1948) There is an interesting point of application of this work to the modern bacon curer.  It has emerged that there is a link between foaming and the length of the amino acids that remain after proteins have been “digested” with the aid of an acid.  This became clear when we tried to dissolve the result of our “digestion experiments” in water.  If for some reason, such “digested” proteins must be used in a bacon brine, if the foaming is excessive and interferes with the curing operation, it will be of great help to “digest” the proteins for longer before it is recovered and hydrated.

The atomic theory

At this point the Chemistry professor paused.  He asked how much we know about Dalton’s atomic theory.  Of course, I knew it well from high school in Cape Town.

I was very surprised when the professor said that Dalton’s work had an important application in the field of nutritional studies. John Dalton was by all accounts not the brightest of students.  Some said that his main characteristic was not being bright but rather, determination.   He was poor and largely self-taught.  He worked as a  schoolmaster in the north of England and developed a very important notion. The notion was that all of the elements are made up of indivisible particles, or “atoms,” and, importantly, that for each element, every atom is identical.  He came to the conclusion that in chemical combinations, two or more different atoms come together to form a firm union and this union, was, as far as the new substance is concerned, always in the same simple ratios by weight.   So, for example, the gas, carbon dioxide has exactly twice the weight of oxygen (by unit weight of carbon) compared to what is present in another gas called carbon monoxide.  So, the different elements in any compound are fixed.  When comparing two different compounds, the same two elements will always be in a simple ratio by weight.

He further concluded that when gasses combine, they always do so in the same simple relation by volume.  Let’s take the formation of ammonia as an example.  When it is formed, 3 volumes of hydrogen combine with 1 volume of nitrogen and they form exactly 2 volumes of ammonia gas.

A conclusion from these is that equal volumes of different gases contain the same numbers of molecules if one sees that many elements, such as hydrogen, oxygen, and nitrogen, have two atoms combined together to form a single molecule.

Early on there was uncertainty if carbon and oxygen each have one-half of the atomic weights that we now assign to them.  Prout in England used improved methods of analysis and arrived at the formula C2H4N2O2.  Double the atomic weights for C and O and you arrive at the modern formula of CH4N2O.

In the early 1800s, Friedrich Wöhler achieved what may believe to the start of organic chemistry when he obtained urea by heating silver cyanate with ammonium chloride. He wrote to his professor: “I can make urea without the use of kidneys.”  By doing this, he demonstrated that an organic compound produced in living systems could also be produced in the laboratory without the aid of any “vital force.”

Wöhler and Von Liebig’s Free Radical

Wöhler worked with Liebig and developed the idea of a common radical that would combine with other reagents, but still retain its own nature and be recoverable by further reactions.  In chemistry, a free radical  is a species that contain one occupied orbital.  A characteristic of a free radical is that they are neutral and they tend to be highly reactive.  The first such ree radical was “benzoyl”.

Starting with benzaldehyde (C6H5CHO), it can be oxidize to benzoic acid (C6H5CO2H).  Note the addition of an oxygen atom.  Alternatively, a chlorinated derivative can be formed.  The original benzaldehyde can be created by reducing or removing oxygen.”  (Carpenter, 2003)  It is easy to see the similarity in what we are doing with nitrate, nitrate, and ammonia and this, in turn, is build upon the logic of the atomic theory.

Gerard Mulder and the nature of animal substance

The Dutch chemist Gerard Mulder (1802–1880) published a paper in a Dutch journal in 1838 which was reprinted in 1839 in the Journal für praktische Chemie. Mulder examined a series of nitrogen-rich organic compounds, including fibrin, egg albumin, gluten, etc., and had concluded that they all contained a basic nitrogenous component (~16%)  to which he gave the name of “protein” (Munro and Allison, 1964) from a Greek term implying that it was the primary material of the animal kingdom.

The term protein was coined by Jöns Jacob Berzelius, and suggested it to Mulder who was the first one to use it in a published article. (Bulletin des Sciences Physiques et Naturelles en Néerlande (1838); Hartley, Harold (1951) “Ueber die Zusammensetzung einiger thierischen Substanzen” 1839)). Berzelius suggested the word to Mulder in a letter from Stockholm on 10 July 1838. (Vickery, H, B, 1950) Mulder suggested using the symbol “Pr” for the radical, that egg albumin could be expressed as “Pr10 · SP” and serum albumin as “Pr10 · S2P,” and that the radical itself had the molecular formula “C40H62N10O12.  (Carpenter, 2003)

This common nucleus was linked with phosphorus and sulfur to give the various compounds referred to above. “Die organische Substanz, welche in allen Bestandtheilen des thier ischen Körpers, so wie auch, wie wir bald sehen, im Pflanzenreiche Vorkommt, könnte Protein von Tporetos primarius, genannt werden. Der Faserstoff und Eiweissstoff der Eierhaben also die Formel Pr + SP, der Eiweissstoff des Serums Pr + SP.” (The organic substance which is found in all the constituents of the animal body, as well as, as we shall soon see, in the vegetable kingdom, might be called protein of Tporetos primarius. The fiber and protein of the eggs thus have the formula Pr + SP, the protein of the serum Pr + SP)  (Munro and Allison, 1964)

Liebig initially liked the concept.  He wrote, “… When animal albumen, fibrine, and caseine are dissolved in a moderately strong solution of caustic potash, and the solution is exposed for some time to a high temperature, these substances are decomposed. The addition of acetic acid to the solution causes, in all three, the separation of a gelatinous translucent precipitate, which has exactly the same characters and composition, from whichever of the three substances above mentioned it has been obtained. Mulder, to whom we owe the discovery of this compound, found, by exact and careful analysis, that it contains the same organic elements, and exactly the same proportion, as the animal matters from which it is prepared; insomuch, that if we deduct from the analysis of albumen, fibrine, and caseine, the ashes they yield, when incinerated, as well as the sulphur and phosphorus they contain, and then calculate the remainder for 100 parts, we obtain the same result as in the analysis of the precipitate above described, prepared by potash, which is free from inorganic matter.”  (Munro and Allison, 1964)

If we look at it in this way, the main ingredients of blood and caseine in milk can be regarded as a mixture of phosphates and other salts, and of sulphur and phosphorus, with a compound of carbon, nitrogen, and oxygen, in which the relative proportion of these elements is fixed.  This compound can then be regarded as the commencement and starting-point of all other animal tissues because these are all produced from the blood. Mulder had an insight that since the insoluble nitrogenised part of wheat flour (vegetable fibrine) when treated with potash, the exact same product is yielded namely protein.  He found that the true starting-point for all the tissues is albumen and that all nitrogenised articles of food, whether derived from the animal or from the vegetable kingdom, are converted into albumen before they can take part in the process of nutrition.  Liebig, like Mulder, ascribes the formula C4s H36N6O14 to protein, and albumen becomes C18H38N6014 + P + S, fibrine is C48E36. N6014 + P + 2 S, and so on.

– Liebig’s Opposition

Liebig eventually rejected Mulder’s concept of a nucleus protein based on work he continued to do on protein chemistry. He sets forth his arguments against Mulder at some length in his book “Researches on the Chemistry of Food,” published in an English edition in 1847. Here Liebig indicates that several chemists were unable to repeat some of Mulder’s basic experiments and that his formulas for fibrin, albumin, etc., as compounds of protein with sulfur and phosphorus in specific relations, do not agree with the results of more recent analyses of these substances. In this, he conveniently forgets his own earlier enthusiasm for Mulder’s view, and says (p. 18): “… A theoretical view in natural science is never absolutely true, it is only true for the period during which it prevails; it is the nearest and most exact expression of the knowledge and the observations of that period. It ceases to be true for a later period, inasmuch as a number of newly acquired facts can no longer be included in it. . . . But the case is very different with the so-called proteine theory, which cannot be regarded as one of the theoretical views just mentioned, since, being supported by observations both erroneous in themselves and misinterpreted as to their significance, it had no foundation in itself, and was never regarded, by those intimately acquainted with its chemical groundwork, as an expression of the knowledge of a given period.” (Munro and Allison, 1964). “Mulder was enraged by the tone of the criticism from Liebig, who was now denying what he himself had previously asserted.” (Carpenter, 2003)

Despite his criticism, Von Liebig suggests the direction which eventually led researchers to ultimately resolved the structure of the protein molecule.

He says (p. 27) : … The study of the products, which caseine yields when acted on by concentrated hydrochloric acid, of which, as Bopp had found, Tyrosine and Leucine constitute the chief part, and the accurate determination of the products which the blood constituents, caseine, and gelatine, yield when oxidised, among which the most remarkable are oil of bitter almonds, butyric acid, aldehyde, butyric aldehyde, valerianic acid, valeronitrile, and valeracetonitrile, have opened up a new and fertile field of research into numberless relations of the food to the digestive process, and into the action of remedies in morbid conditions.” (Munro and Allison, 1964)

It is an interesting thought that in the word “protein” we refer to the important class of body constituents, and we, at the same time, commemorate an erroneous oversimplification of protein structure.  We must also remember that we use the word in a meaning different from that originally intended. The German word for protein is “Eiweiss.” The reason may very well be because of Von Liebig’s eventual rejection of Mulder’s hypothesis.” (Munro and Allison, 1964). Dennis M Bier states that despite these nuances, Berzelius and Mulder were, in the most basic analysis, right: “Protein is the essential general principle of the constituents of the animal body. Thus, one might briefly summarize the physiological roles of protein in metabolism as “responsible for just about everything.” (Bier, D. M., 1999). “The notion of the protein radical disappeared from the literature and the term “protein” gradually began to be applied to all the materials previously described as “animal substance.”   (Carpenter, 2003)

Is Protein the only true nutrient?

Our good professor was on a roll.  Nitrogen, as the key nutrient was firmly established, but is this the only one?  While he is on the subject, he gave us a history lesson on the further development of thoughts around this matter.  As a food producer, this remains one of the overall biggest subjects.  Nutrition!  It is the original and main reason why we eat!

Von Liebig wrote the following in his book, Animal Chemistry or Organic Chemistry in its Application to Physiology and Pathology, that “because his analyses of muscles failed to show the presence of any fat or carbohydrate, the energy needed for their contraction must come from an explosive breakdown of the protein molecules themselves, resulting in the production and excretion of urea. Protein was, therefore, the only true nutrient, providing both the machinery of the body and the fuel for its work.

What is the reason then that we would need the other parts of the food that we consume?   Why is carbonic acid produced in much higher volumes during exercise? The explanation of Von Liebig was that increased respiration was needed to keep the heart and other tissues from overheating. This led to more oxygen finding a way into the tissues, which unfortunately potentially cause oxidative damage and a loss of protein tissue. Fats and carbohydrates then acted as mopping agents of this excess by being themselves preferentially oxidized.

Von Liebig’s book quickly gained a reputation as an important intellectual synthesis.  His ideas gained wide acceptance, the influence which was felt for many years. The Professor of Medicine at Edinburgh University was, for example, asked to investigate an unexpected and very serious outbreak of scurvy in a Scottish prison, he immediately concluded that it must be the result of an inadequate intake of protein. He calculated the average daily protein intake of a prisoner to be an ample 135g. Only 15g of this was from animal sources and 102g from gluten.

His conclusion was to raise the average daily intake of milk to increase the intake of animal protein because, he argued, the power of the body to convert gluten to animal protein was limited.  There were, however, a problem with this logic, as was spotted and pointed out by another Scottish physician who replied that the value of lemon juice in the prevention of scurvy was well established and could not possibly be attributed to its protein content, given that a curative dose contained only a negligible amount of nitrogen.

The theory that muscular work is required to break protein down was problematic.  The traditional diet of laborers was of lower protein content that of the less active rich. Now, remember the book, Foods, we are reading every night with Andreas and his family.  Edward Smith, the author, and a British physician, and physiologist is another scietist of the time who was interested in the welfare of prisoners.  He was worried about the stressfulness of them having to work on a treadmill.  He measured their urea excretion in the 24h during and after their 8 hours of work, and again on their subsequent rest days, and found no difference. His findings were in complete opposition to the position of Von Liebig who would have said that on the basis that the energy expended all came from the breakdown of protein that resulted in the production of urea.  (Carpenter, 2003)

Liebig and Urine

Von Liebig drew attention to urea as an end-product of protein breakdown in the body.  He did not get it right completely.  In his work, “Animal Chemistry” (1842), (p. 62) he wrote, “… We know that the urine of dogs, fed for three weeks exclusively on pure sugar, contains as much of the most highly nitrogenised constituent, urea, as in the normal condition. Differences in the quantity of urea secreted in these and similar experiments are explained by the condition of the animal in regard to the amount of the natural motions permitted. Every motion increases the amount of organised tissue that undergoes metamorphosis. Thus, after a walk, the secretion of urine in man is invariably increased.”

Later (p. 245), he wrote, “The amount of tissue metamorphosed in a given time may be measured by the quantity of nitrogen in the urine.” All this shows Von Liebig’s central thought that protein in muscle was the fuel for muscular exercise.  He believed that the nitrogenous components of the diet must first be converted to living tissue before being broken down to yield urea. “There can be no greater contradiction, with regard to the nutritive process, than to suppose that the nitrogen of the food can pass into the urine as urea, without having previously become part of an organized tissue.” (p. 144).” (Munro and Allison, 1964)

Liebig’s Contribution to Protein Metabolism and the work of Carl Voit

Why this attention to Von Liebig?  It appears from what we have seen that he did not contribute much of permanent value to our understanding of protein metabolism. Nothing could be further from the truth.  Von Liebig adhered to a vigorous application of organic analysis to compounds of biological interest, he undoubtedly laid the foundations of intermediary metabolism and much of the important work that followed Von Liebig was predicated on these findings. Besides these, Von Liebig identified many of the compounds of biological interest which subsequent researchers made their focus areas with great success.

Von Liebig’s ultimate genius was that he took on seemingly insurmountable problems and even though he did not come up with the ultimate solutions, he managed to break the issues down to such an extent that one can say he pointed the way to their ultimate solution. Look for example at his comments on intermediary metabolism.  He wrote (“Researches on the Chemistry of Food,” (1847) p. 10): “The intermediary members of the almost infinite series of compounds which must connect Urea and Uric acid with the constituents of the food, are, with the exception of a few products derived from the bile, almost entirely unknown to us; and yet each individual member of this series, considered by itself, inasmuch as it subserves certain vital purposes, must be of the utmost importance in regard to the explanation of the vital processes, or of the action of remedies.”

Another good example is the fact that he saw certain chemical reactions as only occurring in biological systems and suspected that these were dependent on the presence of proteins. Have a look at the following statement (p. 7) from his book on food chemistry where he came agonizingly close to our modern understanding of the concept of enzymes:  “… There is, probably, no fact more firmly established as to its chemical signification, than this, that the chief constituents of the animal body, albumen, fibrine, the gelatinous tissues, and caseous matter, when their elements are in a state of motion, that is, of separation, exert on all substances which serve as food for men and animals, a defined action, the visible sign of which is a chemical alteration of the substance brought in contact with them. That the elements of sugar, of sugar of milk, or starch, etc., in contact with the sulphurised and nitrogenised constituents of the body, or with analogous compounds which occur in plants, when these are in a state of decomposition, are subjected to a new arrangement and that new products are formed from them, most of which cannot be produced by chemical affinities, this is a fact, independent of all theory.”

Von Liebig’s greatest contribution to the development of protein metabolism is in the school of biochemical studies, founded by him.  This was done first in Giessen, and later in Munich, where he became professor of chemistry in 1852. From here emerged a number of very important proponents of metabolism, chief among them being Carl Voit, whose researches in protein metabolism placed the concept of nitrogen balance on a firm footing.

Voit was intensely interested in “animal chemistry.” He wrote that Dumas was wrong in his assertions since it was well known that pigs would fatten when fed on potatoes that were rich in starch, but had only a small amount of fat. Accordingly, it must be concluded that animals are able to convert carbohydrates to fat even though the conversion required “reduction” rather than oxidation.

French researchers who were regarded as the authorities on this subject challenged this view, and Boussingault put the matter to the test.   He performed another groundbreaking experiment with pigs.  He took a young pig and killed it and analysed its carcass.  He took a littermate of this pig, of the same weight, and fed it measured amounts of feed for another 3 months. The carcass analysis of the second pig indicated that this pig had an extra 13.6kg fat but the feed it consumed only had 6.8kg.

This very clearly showed the French school to be wrong on this point.  Both Boussingault and Dumas retired from working with animals.  Von Liebig became the new authority, even though he had never actually carried out a feeding trial. He continued to advocate his ideas on physiology and nutrition. Most of these were gradually shown to have been completely wrong, but at least they stimulated others to do research, putting them to the test.”  (Munro and Allison, 1964)

An Inspirational Message

Kids, take note that neither Mulder nor Von Liebig illuminated protein or its metabolism fully, but we gain a great appreciation for their work in the early to mid-1800s. I wonder how many of today’s researchers would do as much as these men did with the scant knowledge they had and it is a lesson to us all. Rigour in our work will yield results, no matter how tentative at first.  It reminds me of the old verse from Sunday school in the Groote Kerk in Cape Town that there is profit in all labour.

I think that there can be no doubt that nitrogen is absolutely key to the art of bacon curing and the most important macro molecule we are working with is protein.  I came to realise that bacon is nothing less than the art of manipulating it.  A question of whether the nitrogen that we add to the meat in the form of nitrate or nitrite is good for us or not is in the first instance the wrong question since when you are talking about protein you are talking about nitrogen and vice versa.

Thirdly to nitrogen and protein is the concept of nutrition.  Yes, we eat because we are social animals and there is nothing more sociable than a great meal.  We eat because we listen to bach and drink pilsner.  We enjoy it!  But most importantly, we eat because it keeps us healthy and it contains the fuel we need every day to live and breathe and have our being.  Nutrition is of the absolute greatest importance when we produce food.

The development of the art of meat curing and understanding its chemistry and processes is intimately connected to our most basic understanding of life itself.

I am downstairs in the living room.  Minette passed ut on the couch – she is exhausted.  I’m finishing up and then we will all go to bed.

I love you more than life itself!

Your Dad.


Practical Applications for the Modern Bacon Curer

In bacon production, one determines the total meat content as follows.  Assume you start with 100kg of meat and inject 20L brine.

Meat weight:  100kg
Brine added:  + 20L (100kg becomes 120kg; added through injection/ tumbling)
Loose 10% in cooking/ smoking: – 12kg (120kg becomes 108kg)
Freezing loss of -1%: – 1.08kg yields total bacon ready for slicing: 106.92kg.

Divide the meat weight you started with by the end weight after processing (100/106.92) = 93.52% total meat content.

According to SA regulations, bacon must be at least 95% total meat content.

One doesn’t lose proteins during steam cooking. Only during water cooking. In the older literature on the subject, when they talk about curing, they mean salt only curing as in dry-curing and in this process there is a loss of proteins (if done in the traditional way of turning the meat every day and allowing the extracted meat juices to run off). If one, however, cooks the bacon, as in Australia, during the cooking step, fat will melt and drip off. Exactly how much fat is lost is determined through analysis. I am sure the % is small, but surprising results are obtained through analysis.

It will impact the calculation since total meat is defined as lean meat plus fat. Meat weight after the actually visible fat has been trimmed off x 0.9 is a good approximation to determine actual lean meat content. All meat contains fat that can not be seen. Without it, meat will be completely un-edible. Two further ratios we want to become familiar with are the ratio of percentage protein nitrogen to lean meat % being N x 30 = lean meat % and the nitrogen to protein factor which is 6.25 meaning N x 6.25 = total protein.

These ratios are important for meat processors.   Let’s look at our calculation again which we used above.  Note that they only achieve total meat content of 93% in their bacon and they need to have it at 95% or above.  They can now do the following:

Meat weight:  100kg
Brine added:  + 20L (100kg becomes 120kg; added through injection)

In the tumbling stage, add 1kg of pork protein (80% actual protein – the other 20% will be a filler).  Of course, various levels of functionality are commercially available and one must inquire of what the actual protein percentage is to complete the calculation.  This means that the nitrogen added in our example of a product with an 80% functionality is 80% x 1kg = 0.800kg protein / 6.25 – the nitrogen-to-protein ratio to give us the weight of the protein nitrogen x 30 – the protein-to-lean-meat factor = 3.84kg lean meat. In other words, by adding 800g functional protein, they have effectively added 3.84kg to the starting meat weight as lean meat.  There is no fat since the added functional pork proteins do not contain fat.

They can then use their starting ratio as 100kg + 3.84kg = 103.84 which, after injection and tumbling will yield them 106.92.  Dividing the meat weight you started with by the end weight after processing is now 103.84/ 106.9 = 97.1% total meat content which, if this is in SA, places you well within the legal requirements for bacon.

For those interested in having this in a live spreadsheet I include this sheet, courtesy of Dr. Francois Mellett. ED2-8 Cost op Protein, LME, and TME.  Here he compares the cost of different protein sources and uses the conversion factor of 4.8 to move between % protein and TME/ LME.  He derives his conversion factor of 4.8 to move between % protein and LME eqw as follows:  The two equations he works with are:

Protein Nitrogen x 6.25 = Proteins

Percentage Lean Meat = (Percentage Protein Nitrogen × 30 )

Let’s take TVP Soy with a protein content of 50%.  Therefore:

Protein Nitrogen x 6.25 = 50%; Protein Nitrogen % = 50%/6.25 = 8

Percentage Lean Meat = (8 × 30 ) = 240/100 = 2.4.

The same can be achieved by the factor 30/6.25 = 4.8; 4.8 x 50% = 250/100 = 2.4

A very small added benefit for the producer will be that the protein added representing 3.84kg lean meat will be cheaper than the actual meat.  There is, therefore, no financial downside for the producer.  The producer is limited in how much of the protein can be added since it will start to affect the appearance and colour of the bacon.  My suspicion is that in countries like Australia, more can be added due to the fact that the bacon is sold fully cooked which yields a paler bacon as opposed to South African producers where the bacon is sold par-cooked and have a much brighter reddish-pinkish appearance.  Adding protein, I suspect,  will, therefore, have less of an impact in Australia compared to South Africa.  I will not be surprised if some Australian producers add a lot more non-meat and meat protein alike and therefore inject more brine.

The reality is that actual food legislation in Australia and New Zealand allows for a slightly different approach which we will look at in detail in the next article. For now, it is enough that we start interacting with some of the values we encounter as we learn how they were discovered.

We continue our fascinating journey by looking at the contribution of a formidable man, Justus von Liebig during whose time, protein was identified and named.  We also encounter our first ratio when Mulder estimated that meat proteins contain 16% nitrogen (N).  By multiplying the nitrogen content with 100/16, the protein content is
estimated. Therefore, nitrogen x 6.25 is the protein content.


Further Reading

Counting Nitrogen Atoms – The History of Determining Total Meat Content


green-previousgreen-home-icongreen-next


(c) eben van tonder

Bacon & the art of living” in bookform
Stay in touch

Like our Facebook page and see the next post. Like, share, comment, contribute!

Bacon and the art of living

Promote your Page too


Notes

(1) Nitrate is the essential curing agent and in Salpeter is coupled with potassium or sodium or calcium.

References

Bier, D. M.; The Energy Costs of Protein Metabolism: Lean and Mean on Uncle Sam’s Team, Protein and Amino Acids, 1999, Pp. 109-119. Washington, D.C., National Academy Press

Bulletin des Sciences Physiques et Naturelles en Néerlande (1838). pg 104. SUR LA COMPOSITION DE QUELQUES SUBSTANCES ANIMALES.

Carpenter, K. J.; A Short History of Nutritional Science: Part 1 (1785–1885), The Journal of Nutrition, Volume 133, Issue 3, 1 March 2003, Pages 638–645, https://doi.org/10.1093/jn/133.3.638

Hartley, Harold (1951). “Origin of the Word ‘Protein. Nature 168(4267): 244–244. Bibcode 1951Natur.168..244Hdoi10.1038/168244a0.

Munro, H. N., and Allison, J. B..  1964.  Mammalian Protein Metabolism.   Academic Press.

Vickery, H, B; The origin of the word protein” Yale journal of biology and medicine vol. 22,5 (1950): 387-93.

“Ueber die Zusammensetzung einiger thierischen Substanzen”. Journal für Praktische Chemie (in German).16: 129–152. 1839.doi10.1002/prac.18390160137

Featured Image: Venison Sausage Catalan Style, Robert Goodrick.