The story of bacon is set in the late 1800s and early 1900s when most of the important developments in bacon took place. The plotline takes place in the 2000s with each character referring to a real person and actual events. The theme is a kind of “steampunk” where modern mannerisms, speech, clothes and practices are superimposed on a historical setting. Modern people interact with old historical figures with all the historical and cultural bias that goes with this.
The work is far from complete, but with so many collaborators around the globe, I put this out for review and comment. So, to the curing industry, please fire away with the contributions and corrections.
In the development of bacon curing technology, four iconic curing methods stand between the old dry-cured system and the modern system of the direct addition of nitrites to curing brines and the latest development which is Grid bacon. Here I list the chapters dedicated to these different systems of curing.
In the post above I list all the chapters in Bacon & the Art of Living which deals with the legendary company from Calne, Wiltshire, C & T Harris. I present the chapters for those who desire to restrict their inquiry to the Harris operations.
I fell in love with the story of the Kolbroek from the first time I heard it. It is one of the indigenous South African pig breeds, closely related to the Kune Kune from New Zealand. In trying to trace the origins of these breeds, I had to go back to the development of the English pig. It’s one of the greatest stories of our trade and here I share the complete work from Bacon & the Art of Living on these amazing animals! The list of chapters dealing with these are given in the link above.
In Bacon & the Art of Living, I dedicate three chapters to salt. It remains one of my favourite study subjects. The truth is that I only scratched the surface. It is a subject that I will return to often and I am planning to expand on Chapter 10.12, The Salt of the Land and the Sea. In the link above, I present the three chapters for those who are interested in a more thematic study.
The Afrikaner Nation and Boers feature prominently in my story of bacon. The timeline is such that I returned to South Africa just before the outbreak of the war. So, inserting the Boer War into this work makes perfect sense.
The second role of inserting it is that it is a perfect example of the power of the mental world where we serve images we created and exist only in the mind such as nationalism. It is central to the “art of living” considerations and insights that came to me through the discipline of meat curing.
The story of bacon is set in the late 1800s and early 1900s when most of the important developments in bacon took place. The plotline takes place in the 2000s with each character referring to a real person and actual events. The theme is a kind of “steampunk” where modern mannerisms, speech, clothes and practices are superimposed on a historical setting. Modern people interact with old historical figures with all the historical and cultural bias that goes with this.
Finally - Bacon, the Superfood
December 1990
By Eben van Tonder
(Latest review: 25 December 2022)
Introduction
The most exciting journey on earth has been the almost 20 years it took me to unravel the mysteries behind bacon curing. In the end, I’ve learned that the greatest goal in life is not to strive for permanence, and the never-changing for this is just an illusion and what will the satisfaction be in achieving such an end? In life, the greatest satisfaction is in the inherent ability always to explore and improve, no matter past successes and failures. Life stops when we cease to explore. The music stops when the last note is played, and, in a way, it is up to us when the last note will be played.
I’ve set out to understand curing and credited a few companies with “making the best bacon on earth.” (Chapter 16.00: The Best Bacon on Earth.) I’ve learned that meat curing is an exact mimic of physiological processes. However, I’ve also learned that we stopped mimicking our physiology when Ladislav Nachmüllner invented nitrite curing in 1918 (See Chapter 15.03: The Direct Addition of Nitrites to Curing Brines – the Master Butcher from Prague). Since then, most attempts at “improving” curing have been made to circumvent the nitrosamine issue by eliminating nitrite from curing brines. This proved almost impossible to achieve for many years. Nobody thought that such a system is possible that achieves curing through the second route for nitric oxide formation to cure the meat than the reduction or reductase steps of “nitrate-nitrite-nitric oxide”.
The industry knew that the oxidation or synthase route existed via the “enzymatic NO-synthase –> L-Arganine,” responsible for the production of nitric oxide in the body and that in long-term curing such as dry-cured hams and bacon, the same reaction is mediated through bacteria giving us “bacteria mediated enzymatic NO synthase –> L-Arganine” pathway. Nobody could design a system for commercial, high-throughput factories for many years based on this pathway. I am aware of one such a system from Europe that successfully incorporates the required elements to achieve curing within 24 hours using this pathway, therefore skipping the use of nitrites entirely. Richard Bosman and I have been able to duplicate this in our own brine formulation here in Cape Town, and still, as monumental as that achievement is, in light of the discoveries of the physiological value of nitrite and the mechanisms at our disposal to completely eliminate the possibility for nitrosamine formation from nitrite in the curing brine, I suddenly understand that by retaining the nitrite and incorporating the latest research on the inclusion of plant matter in curing brines, a superfood can be created.
The company we created to “house” these inventions is aptly called Oake Woods & Co, in honour of William Oake, who invented tank curing in the early 1800s and his son, also called William Oake, who, through the company Oake Woods, invented a progression on his dad’s invention called auto-curing at the end of the 1800s. (Chapter 12.01: Mild-Cured Bacon, Chapter 13.06.01: Oake-Woods & Co., Ltd., Rapid, and Auto-Cured Bacon) It is directly due to their work that Wiltshire curing existed and is still practised in the United Kingdom (Chapter 14.04: Wiltshire Cured or Tank Cured Bacon.). William Oake invented it!
The firm, Oake-Woods no longer trades in the UK, and Richard and I thought it appropriate to take up the name. The curing system where we exploit the “bacteria mediated enzymatic NO synthase –> L-Arganine” we develop for one client, and we will likely, end up working with the Europeans on it now that we successfully achieve such a system ourselves and can intelligently and productively suggest changes and improvements to their system. The rest of our work is squarely focused on retaining nitrite and exploiting all the benefits and advantages delineated in the previous three chapters. We believe that we have developed the best and most healthy bacon on earth! A superfood!
The experience of working on an entirely new brine system affords us unique insight into the life of William Oake, senior and junior. Every curing system was invented by a person or a group of people. It did not just fall from the sky! Men like William Oake, who invented mild curing in the early 1800s, and his son, who invented auto curing in the latter half of the 1800s. With friends like Richard Bosman, I have the privilege to go through the same experience these men went through.
How did this major change in thinking happen, and what is the basis of such a new approach? I dealt with major points already in the previous three chapters. These four final chapters form a unit:
In light of the physiological value of nitrites, retain their presence in curing brines.
In light of the danger of N-Nitrosamine formation, take every precaution, including adding Vitamin C and E and limiting the number of residual nitrite in the final product in line with the discussion in Nitrosamines.
Incorporate sufficient plant components into the brine formulation to ensure the complete elimination of nitrosamine formation in the product, oral cavities, and digestive tract.
We have made this point in the previous chapter, but for those who target eliminating nitrites from cured meat completely, where one finds nitrate and bacteria, such as in the mouth or digestive tract, you will always find nitrite and nitric oxide and where you have nitric oxide, one can find nitrite and nitrate. This calls into question the wisdom to try and find a meat-curing system which will result in absolutely no nitrites ever being present in the cured meat. (See Communication Record: Leif Horsfelt Skibsted)
Plant Based Sourced on Nitrate
Beetroot
Artichoke
Holy basil Gymnema sylvestre
L9H
Ashwagandha root
Salvia
St. John wort,
Broccoli
Stevia
Spinach
Gingko
Kelp
Tribulus
Eleuthero
Epimedium
Eucommia
Hawthorn berry
Rhodiola
Green tea
Codonopsys
Panax ginseng
Astragalus
Pine bark
Dodder seed
Schisandra
Cordyceps
A particularly effective mixture is beetroot, artichoke, holy basil, and ginkgo.
This work can never be completed. Let me put it in Biblical terms where the bible is referred to as the conon which comes from the Greek κανών kanōn, meaning “rule” or “measuring stick”. There is a debate among Christians if God, as they understand and define him, still speaks today. Certain groups believe God is still speaking, and others believe the conon is closed.
I want to use the concept of a closed canon and apply it to meat curing. Some believe that meat formulations “are closed”. The canon, as it were, is the traditional way that cured meat products have been made in the past. This is a problematic view as it does not keep abreast with the latest scientific findings and the changing reality of our culture. As such, the work can never be completed. Subsequent generations will always have the onus to improve on previous generations in light of the culture and science.
Conclusion
I remember when Andreas Østergaard sat me down in a coffee shop in Denmark and asked me to explain to him what we wanted to do with the meat like yesterday. So started my real education in curing. In Bacon & the Art of Living, I use the opportunity to cast the actual and real lessons learned in Europe, England, America, New Zealand and Australia over many years within a particular historical context. It allowed me to put myself in the shoes of the historical characters I attempt to bring to life, and in many instances, it gave me insights that I would not have had.
My understanding of a very complex subject matter is limited and I use the opportunity to write as a way to learn. The last few chapters have been challenging. You will notice extensive quotes. I will go back, as I always do, to these chapters whenever I get a chance, and I re-write the quotes in the most simple language I can find since it is true that the more simple I can present it, the better I understand it myself. It is, after all, easy to complicate something, but understanding is a prerequisite for simplifications. The Dutch have a saying that it is not the writing that is the difficult thing, but the cutting! I will add the simplification and changing from quoting others to putting it in my own words. This is how I learn.
My children grew up with me, spending every waking moment at work, hiking the mountains of the Western Cape, or studying. This work will have many more revisions as I continue to learn. The most thrilling part of this was the complexity and the fact that I had to uncover the history that is not dealt with systematically in any other place, namely the story of curing. This was an unexpected bonus!
The quest was, however, to understand bacon as well as “the art of living”. I started in Chapter 1 with Bacon, my Teacher! This sound a bit strange, but in my case, it is true. I remember, as a boy of 17, sitting on the beach in Amanzimtoti, South of Durban, working through the Institutes of the Christian Religion by John Calvin in Dutch. What I was seeking was something permanent. A future that would not become irrelevant by later discoveries and inventions.
The search for the true nature of bacon became a lesson in understanding the complexity of the mammalian body and life itself. My faith changed to spirituality, and my quest for what is unchanging became the trill to be involved in the great cycles of life, content to be a part of it to the limited degree that I can understand and enjoy it. Life is so much bigger than my limited and finite understanding, and my enjoyment of it is far removed from any actual reality of my life. I am thankful that I can extend this to all areas of my life. When all is said and done, I could experience a thousand lifetimes through this work, and while I did that, hopefully, I learned something with which I can serve my fellow human beings. This is why I am sharing it. That, and the sheer enjoyment of telling the story. Life is beautiful!
The story of bacon is set in the late 1800s and early 1900s when most of the important developments in bacon took place. The plotline takes place in the 2000s with each character referring to a real person and actual events. The theme is a kind of “steampunk” where modern mannerisms, speech, clothes and practices are superimposed on a historical setting. Modern people interact with old historical figures with all the historical and cultural bias that goes with this.
The Curing Molecule
Before we get into storytelling, it will be of great value to have a technical discussion about meat curing. The story will be more enjoyable if you understand how curing works. This chapter is designed to give you enough background to understand the fundamentals of curing and some of its complexities. This is not intended to be a science textbook and so I take the liberty to present matters in a somewhat simplified manner. I don’t for example always indicate when I am talking about an ionic compound when I write a simple notation for nitrite as NOO. I also added, “Want to know more?” sections for those who have a chemical background or those who want to gain a deeper understanding. Get through Chapter 2 and a story awaits which will blow your mind!
What is Meat Curing?
The most important question in a work on the history of meat curing is to understand what meat curing is! Meat curing is the process whereby meat is changed into a form that lasts outside a refrigerator. We can say that it imparts longevity to meat. In the curing process, there are two changes that we can identify with our senses. A delicious taste develops and the colour change to a characteristic pinkish/ reddish colour. A slightly less obvious characteristic is cured meat is safe from microorganisms which make us sick. These characteristics are observed through observation but what happens as far as chemical reactions are concerned?
The large molecule which is the building block for muscle or meat is called a protein. An important class of proteins in our body is called hemeproteins (also spelt haem protein or hemoprotein). These are proteins which have something attached to them that biochemists refer to as a heme prosthetic group. A prosthesis helps a person who lost a limb to still accomplish a certain task like a handshake. The prosthesis in the case of proteins is non-protein additions to the protein which accomplish specific tasks. The heme prosthetic group allows proteins to carry oxygen, facilitate electron transfer and participate in oxygen reduction among other processes. Curing is the reaction between protein and the small gaseous molecule called nitric oxide (NO).
In curing nitric oxide is bound onto this heme component. It is this binding of nitric oxide to the protein which we observe as a pinkish/ reddish colour. Nitric oxide is responsible for key characteristics of cured meat. The colour, the longevity and the fact that the product is free from microorganisms, likely to make us sick. Another characteristic of cured meat we observed with our senses is the cured taste. Exactly how the taste is altered through curing is something which we have not completely worked out yet.
Want to know more?
Nitric oxide is the most important molecule related to the cured colour of meat. This does not say that other chemical species also derived from nitrogen do not play a role in changing the colour. This is true related to colour formation as well as anti-microbial ability. An example is nitrogen dioxide (NO2). The researcher Cornforth (1998) showed that pink rings that form in beef roasts cooked in gas ovens and turkey rolls are produced by nitrogen dioxide (NO2). Similarly, we know that both nitrite and nitric oxide plays a very important role in the antimicrobial working of the curing process. The researcher, Scairer (2012), reported on the antimicrobial value of nitric oxide.
How is Nitric Oxide formed?
Let’s begin by looking at how nitric oxide is formed. For our discussion, what is essential to know is that it is formed both inside the body or by the body itself and outside the body. Almost every cell in our bodies can produce it. There are also two basic types of reactions that produce it.
i. Meat proteins contain an amino acid called L-Arginine. The body has the ability to access its nitrogen and combines it with an oxygen atom to create nitric oxide. Beginning in the 1990s scientists started to understand that certain bacteria also have the ability to convert L-arginine into L-citrulline and nitric oxide which cures meat. The exact mechanism is still under investigation but this remarkable discovery accomplishes what has become like the search for the holy grail namely the curing of meat without the use of nitrate or nitrite.
ii. The second major way that nitric oxide is created is the conversion of nitrate to nitrite and the nitrite to nitric oxide. The source of nitrate can be salts such as sodium or potassium nitrate or it occurs in large volumes in certain plants which we regularly consume. Bacteria break the nitrate down to nitrite and nitrite is changed into nitric oxide through mainly chemical reactions. In conventional curing operations, either nitrate or nitrite salts are used to create nitric oxide which cures meat.
This means that bacteria are involved in the reactions involving nitrate and L-Arginine. Interestingly enough, this seems to be the reason why this remarkable discovery remained unidentified for so many years. The conversion of L-Arginine only takes place when no nitrate is present. If nitrate is present the bacteria use the nitrogen found in nitrate and not L-arginine. That L-Arginine plays a role in salt-only, long-term curing processes has been suspected for many years and in the 1990s it was identified that the reaction was mediated through bacteria. What seemed to have happened was that the scientific community continued to relegate this to the realm of long-term cured hams and bacon. It is only in recent years that commercial quick-curing factories using bacterial fermentation became a reality in large high throughput commercial curing plants using bacterial fermentation and no nitrates or nitrites. In fact, so successful have these developments in meat fermentation been that meat curing is achieved in approximately the same time as is done with sodium nitrite.
That sets the first part of the stage for our discussion about meat curing. My own life is a good example of how only knowing the facts as I presented above about meat curing does not mean that you can use the techniques. The reality is that these methods can only be effectively applied within the framework of a complete curing system and developing such a system is far more complex than one imagines. I have, for example, known that bacteria are able to use L-Arginine to create nitric oxide for a full five years before I started to unravel the context and requirements of what it will take to use this to cure meat in a commercial curing operation. Colour stability and a safe microenvironment must be created. The formation of biofilm must be managed. The speed of the reaction must be increased. So I can go on and on and the point is simply this, it is a wonderfully complex endeavour.
Let’s return to the consideration of the two curing paths that we just looked at. In the course of this chapter, I will make repeated references to these two reactions. The story of bacon is, in a nutshell, the story of ways to produce nitric oxide in the fastest possible time to cure meat.
It has been an obsession of many curers and scientists to find another way to cure meat. In other words, not to use the nitrate-nitrite-nitric oxide path to curing due to questions that emerged about the safety of nitrate and nitrite. The use of bacteria to cure the meat achieves this! However, right at the outset, I want to caution that nitrate, nitrite and nitric oxide are like the Father, the Son and the Holy Spirit in that where you find one, you find them all due to the high reactivity of these nitrogen species (Reactive Nitrogen Species) as we refer to them. Creating nitric oxide with bacteria from L-Arginine may seem like solving the problematic use of nitrate and nitrites in meat curing but if the two cousins of nitric oxide (nitrate and nitrite) will in any event both appear in meat cured with bacteria only, is it really addressing the problem?
A far more fundamental question exists namely if the hysteria against nitrate and nitrite is warranted! Is the use of nitrite or nitrate really problematic? Are these really entities of concern when we consider human health? In recent years evidence started to emerge that the exact opposite is true namely that if we do not ingest sufficient nitrate and nitrite, this has far more detrimental health effects on humans than having them in our food.
Want to know more?
A closer look at the nitrate-nitrite-nitric oxide sequence in our bodies:
The researcher, Weitzberg (2010) reportes that “several lines of research . . . indicate that the nitrate-nitrite-nitric oxide pathway is involved in regulation of blood flow, cell metabolism, and signaling, as well as in tissue protection during hypoxia (meaning, a lower-than-normal concentration of oxygen in arterial blood).” This is the exact curing reaction when we begin with slatpetre (NO3–) or with nitrite NO2– as is the predominant current system of curing in high throughput curing operations. When we use sodium nitrite to cure the meat, the process still results in the formation of nitric oxide (NO). The curing reaction is therefore a “natural reaction” which takes place in our bodies and is essential to life.
Can we remove nitrogen (nitrate or nitrite) from our diets?
We are all aware of the importance of oxygen to our everyday lives. Without it, life as we know it is not possible. A second element as important to life as oxygen is nitrogen. Where does nitrogen come from and why is it important to life? Let’s take a step back and consider nitrogen for a moment before we return to nitrate and nitrite in food and the chemistry of curing.
The Importance of Nitrogen
I have written extensively about how reactive nitrogen species are formed from atmospheric nitrogen and I will leave the subject to be discussed later.
Sufficient to point out that nitrogen is one of the most essential plant foods and is taken up in the structure of plants. From the plants, they provide sustenance to animals when they eat the grass. The ability of animals to absorb nitrogen is a key element in what makes food nutritious. From very early it has been shown by various scientists that animals fed with food containing no nitrogen get sick and even die whereas animals fed with food high in nitrogen thrive. This is important since, in evaluating the use of nitrogen in meat curing (through nitric oxide), the first thing we must realise is that without nitrogen, there is no nutrition. We need nitrogen like we need water or oxygen to live.
Want to know more?
The role of nitrogen in plants:
Nitrogen is part of the green pigment of plants, responsible for photosynthesis, called chlorophyll. It further is responsible for a plant’s rapid growth, increasing seed and fruit production, and improving the quality of leaf and forage crops. (Plant Nutrients and Lilies) This is important as we will later see how nitrate, nitrite and nitric oxide not only cures meat and ensures the overall health of our bodies, but how the same reaction is key to the nutrition of plants. The curing reaction is by no ways something foreign. It is vitally important to all aspects of animal and plant life and humans form part of this group of animals.
Nitrogen as plant food:
Potassium (K) and nitrogen (N) together with phosphorous (P) are considered the primary nutrients of plants. These are normally lacking in the soil because plants use them for growth and thus deplete it. As we will see, nature replenishes nitrogen, but modern farming created the demand to add extra nitrogen to the soil. Potassium (K), nitrogen (N) and phosphorous (P) are all part of the macronutrients. The secondary nutrients are calcium (Ca), magnesium (MG), and sulphur (S). These nutrients are normally abundant in the soil. When lime is applied to acidic soil, large amounts of calcium and magnesium are added. Decomposing organic matter normally yields enough sulphur. Potassium (K) is absorbed in bigger volumes than any other mineral element except nitrogen and in some cases, calcium. It assists in the building of proteins, photosynthesis, and fruit quality and it reduces diseases. (Plant Nutrients and Lilies) The abundance of potassium in plants can be seen from where we first identified it namely from potash or plant ashes soaked in water in a pot. Potassium is derived from this practice predating the industrial revolution.
All proteins, the building blocks of muscles contain nitrogen. Our bodies use nitric oxide to stay healthy in many different ways. To such an extent that without nitric oxide in our bodies, life will not be possible. The question is now if the body produces enough nitric oxide on its own and the answer is no. We need to supplement what the body can produce through our diet. Some of the foods where we get nitrate or nitrite in our diets are:
-> Vegetables
By far the biggest source of nitrates is leafy green vegetables. The way that the nitrates end up as nitric oxide in our bodies is the nitrate-nitrite-nitric oxide sequence. These vegetables also contain nitrites and these turn into nitric oxide through the steps of nitrite-> various-chemical-reactions ->nitric oxide.
-> Water
Borehole water often has nitrate and nitrite from animal and human waste and fertilisers in surrounding areas. The sequence of reactions that change the nitrates in water into nitric oxide is the same as above namely nitrate-> nitrite-> nitric oxide.
-> Cured Meat
Nitrate salts are found naturally around the world. Potassium nitrate for example we know as saltpetre. Nitrite salts are manufactured salts containing sodium and nitrite. Saltpetre (potassium or sodium nitrate) is used in meat curing to this day. If we consume cured meat we ingest nitrates or nitrites and it ends up changing into nitric oxide in our bodies either through the reaction nitrate-nitrite-nitric oxide or nitrite-nitric oxide. Cured meat is, however by far the smallest and most insignificant source of nitrates and nitrites.
What is important to focus on here is the path from nitrate to nitric oxide. Let me illustrate it in greater detail using saltpetre as an example. Saltpetre can be represented as one nitrogen atom and three oxygen atoms and to make it easy, I will write it as NOOO to focus on the number of oxygen atoms. The astute observer will see that I leave the metal part of saltpetre out and I represent only the nitrate part. Nitrate joins forces with metals like sodium, calcium, or potassium to form sodium nitrate, potassium nitrate (which is known as saltpetre) or calcium nitrate. In terms of curing meat, only sodium plays a further role and we will look at that later, but for now, it’s helpful to ignore the first part of the pair and focus only on the nitrate part.
When nitrate connects to one of the metals it forms a very stable salt which does not easily lose an oxygen atom. We said we represent nitrate in this chapter as NOOO, but you remember that the actual representation is NO3–. The stable molecule now loses an oxygen atom through bacteria that use the extra oxygen atom in its metabolism. So, NOOO loses an oxygen atom through the action of bacteria and nitrite is formed which we represent as NOO (actually, NO2–). In contrast to nitrate, nitrite is an unstable molecule and is easily changed to one of the other Reactive Nitrogen Species (RNS) such as nitric oxide. If NOO loses an oxygen atom, NO or nitric oxide is formed. This reaction happens chemically and not through bacteria and it involves nitrate first changing into other forms before it ends up as nitric oxide.
Ancient curing methods start with nitrate, which is changed to nitrite and eventually to nitric oxide. This is the way that it was done before sodium nitrite became available around the world after World War I and many artisan curers still prefer to start with nitrate when they cure meat. The reason for this is that the bacteria also contribute to the development of flavours in the meat which one loses if one starts directly with nitrite in the form of sodium nitrite which does not require bacteria to change into nitric oxide to cure the meat. It became the norm following World War II to skip the step of changing nitrate to nitrite which is time-consuming and may result in inconsistent curing by beginning the reaction sequence by using sodium nitrite and not nitrate.
Whether you talk about the reaction nitrate-nitrite-nitric oxide or nitrite-nitric oxide, these scenario has at their heart the loss of one oxygen atom in every step. The opposite is also possible mainly that oxygen atoms can be added. At times, nitric oxide can gain an atom to form NOO or nitrite and NOO to form NOOO or nitrate. Remember that we said that where you find one, you are likely to find the others. So, where you have either nitrate, nitrite or nitric oxide, you are likely to find the others also.
Want to know more:
Ionic compounds:
It is easy to see that the 3 following the O which represents oxygen indicates that one nitrogen atom binds to three oxygen atoms in the nitrate molecule, but what does the minus sign indicate? The nitrogen and three oxygen atoms form a unit or a package. The nett charge of this package is, however, negative, which is what the minus sign indicates. We call this not a molecule, but a very special molecule called an ion (where there is only one atom) or an ionic compound as in the case of nitrate with nitrogen and oxygen atoms in the molecule. A compound is supply two or more elements grouped together. An ion is what we call a unit like this (which can be an atom or a molecule) but it has a net electrical charge which is either + (positive) or – (negative). Ionic compounds are held together by these ionic bonds or electrostatic forces, as we refer to them. The ion by itself has a charge as either + or – but when it connects with another ion of opposite charge, the molecule is neutral overall. It has a component which is positively charged (called an anion – a positively charged ion) and a negatively charged component (called a cation – a negatively charged ion). An example of an ionic compound from everyday life is table salt with one positively charged sodium ion (Na+) and one negatively charged chloride ion (Cl−) called sodium chloride or table salt. We call it a salt because one component is alkali and the other is acidic.
The combination of nitrogen and oxygen yields several salts of importance for example saltpetre. Like table salt is the colloquial term for sodium chloride, so the colloquial term for potassium nitrate is saltpetre. The nitrate component or ion, NO3– reacts with metal ions such as sodium, magnesium, potassium, or calcium. The metal components occur in solution (mixed into water) as a strong acid in the form of (HNO3) with a strong base (KOH) which reacts to form a crystal [P+].[NO3–] or PNO3. Traditionally, saltpetre refers to potassium nitrate.
Another metal it often combines with is sodium to form sodium nitrate. Sodium or natrum (German) is represented by the letters “Na” for sodium and again, the nitrate component which is NO3– combines to give sodium nitrate written as [Na+].[NO3–] to form NaNO3.
The final example is the metal calcium, abbreviated Ca which represents calcium, but calcium combines with two sets of nitrates (NO3–) x 2 written as (NO3)2 and the complete name is therefore Ca(NO3)2. In our discussions here we ignore the metal part of the molecule being in our examples above potassium (K), sodium (Na) and Calcium (Ca). For easy of reference, when we talk about nitrate, we only refer to the NO3–component but often, there would be either K or Na or Ca attached to the nitrate but because it plays no role in the rest of the chemical reaction, we will conveniently ignore these metal components.
Summarise different metals that combine with nitrate:
NOOO (nitrate) + K (potassium) = KNO3 (Potassium Nitrate)
NOO (nitrite) + Ca (Calcium) = Ca(NO2) 2 (Calcium Nitrite)
This is another equally likely reaction which involved the gaining of oxygen atoms and not losing it (reduction). An example of an oxidation reaction is the reaction with L-Arginine which we looked at briefly and the oxidation of ammonia (NO3)/ ammonium (NH4+), both of which creates nitric oxide and are mediated through bacteria. We will tell the story of the formation of nitric oxide from ammonia in a subsequent chapter.
We summarise the two reactions as follows:
-> Reduction (losing oxygen atoms)
One way to create nitric oxide is by removing oxygen atoms. We remove one of the three oxygen atoms from nitrate (NOOO), and we get nitrite (NOO). In the name, the “a” is replaced with an “i” and, nitrite has one less oxygen atom than nitrate. If we remove one more oxygen atom from nitrite (NOO) we get nitric oxide (NO) which is the primary curing molecule.
So, let’s review the simple but important chemistry. Don’t worry about trying to remember these. We will refer to them so many times that you will easily remember them when we are done.
NOOO or (NO3–) = Nitrate or Saltpetre
NOO or (NO2–) = Nitrite
NO = Nitric Oxide
When nitrate loses one oxygen atom, it changes to nitrite and nitrite that loses one oxygen atom changes to nitric oxide.
NOOO (nitrate) – O = NOO (nitrite)
NOO (Nitrite) – O = NO (nitric oxide)
We have seen that to form nitric oxide from nitrate salts, you lose two oxygen atoms. Chemists say that the number of oxygen atoms is reduced. The word “reduced” will be important as we will say that the nitrate or nitrite is reduced, we mean that it lost an oxygen atom.
The same salts that nitrate forms with metal are formed by the more reactive nitrite.
NOO (nitrite) + K (potassium) = KNO2 (potassium nitrite)
NOO (nitrite) + Ca (Calcium) = Ca(NO2) 2 (Calcium Nitrite)
-> Oxidation (Gaining Oxygen Atoms)
Earlier, we have seen that nitric oxide is created by our bodies through certain processes in our cells. Instead of taking an oxygen atom away, it created nitric oxide by starting with a nitrogen atom and then it adds an oxygen atom to the nitrogen atom, and it forms nitric oxide. This process is called oxidation (adding an oxygen atom).
Ammonia is oxidized through bacteria which adds an oxygen atom to nitrogen and creates nitric oxide. More about this later when we drill down into sal ammoniac. Another way this happens is when ammonia is burned in the presence of oxygen. In this case, it is also oxidized to either nitrogen gas (N2) or nitric oxide (NO). It must be noted that the oxidation of ammonium salts usually produces nitrogen gas.
The Ever-Presence of Nitrogen
Let’s return to considering how gas, nitrogen, enters our world and becomes part of the nutrition of plants and animals. Otto et al (2010) estimate that with 1.4 billion lightning flashes each year, an estimated 8.6 billion tonnes of chemicals of one form or other are generated from the general formulation of NOx. Don’t get scared with the introduction of the x. It tells us we have a variable from which the exact number differs. You are already familiar with three of the forms this can take. Look at Nitric Oxide (NO), nitrite (NO2-), and nitrate (NO3–) and see if you can spot the function of the x which in this case is either an implied 1, an overtly stated 2 or 3. Can you tell me why the 1 is implied and for what form of nitrogen and oxide?
This estimate by Otto et al (2010) is staggering. It dwarfs what the curing industry can produce. It comprehensively obliterates the notion that nitrogen or nitric oxide or even nitrite for that matter are evil chemical species, which is produced by humans, and added to meat which will, so it is reported, do harm to the human body.
Otto, et al (010) and many others show conclusively that the presence of nitrate and nitric oxide is pervasive on planet earth. Nitrite is far less prevalent than nitrate. Nitrite is highly reactive and does not stay in this state very long (similar to nitric oxide). It forms a salt such as sodium nitrate which is more stable and is naturally found in some vegetables and meat, but still, nitrites often occur in vegetables. Most current sodium nitrites in dietary sources are made by humans. Nitric Oxide is also “fleeting” being a gas which quickly reacts to become another species.
Want to know more:
“Nitrogen is an essential element for all forms of life and is the structural component of amino acids from which animal and human tissues, enzymes, and many hormones are made. For plant growth, available (fixed) nitrogen is usually the limiting nutrient in natural systems. Nitrogen chemistry and overall cycling in the global environment are quite complex due to the number of oxidation states. Nitrogen itself has five valence electrons and can be found at oxidation states between −3 and +5. Thus, numerous species can form from chemical, biochemical, geochemical, and biogeochemical processes.” (Hanrahan, 2005) Below I list the oxidation state of different nitrogen species (and important chemical data).
Global nitrogen species and selected chemical data by: Hanrahan, 2005.
If you’re interested to learn more, google oxidation states. For those with a lively interest in this, I give the oxidation state of key nitrogen species.
The special Oxidation States of Nitrogen
Ox. state
Species
+5
NO3
Nitrate ion, oxidizing agent in acidic solution.
+4
NO2
Nitrogen dioxide is a brown gas usually produced by the reaction of concentrated nitric acid with many metals. It dimerizes to form N2O4.
+3
NO2
An oxidizing agent usually produces NO(g) or a reducing agent to form the nitrate ion.
+2
NO
Nitrogen oxide is also called nitric oxide. A colourless gas is produced by the reaction of metals with dilute nitric acid which then reacts with O2 in the air to form the brown NO2 gas.
+1
N2O
Dinitrogen oxide is also called nitrous oxide or laughing gas.
0
N2
Commonly found in air and very unreactive because of the very strong triple bond.
-1
NH2OH
NH2OH Hydroxylamine, a weak base, can act as either an oxidizing agent or a reducing agent.
-2
N2H4
Hydrazine, a colourless liquid, is a weak base. Used as rocket fuel. It is disproportionate to N2 and NH3.
-3
NH3
In basic solutions and as NH4 agent in aqueous solutions. When ammonia is burned in the presence of oxygen it is oxidized to either N2 or NO. The oxidation of ammonium produces nitrogen gas. salts usually.
Demonstrating Oxidation and Reduction
Let’s illustrate this with a helpful diagram which illustrates both oxidation and reduction of nitrate found in beetroot.
Nitrate–nitrite–nitric oxide pathway. Adapted from Niayakiru et al., 2020 by Milton-Laskibar (2021).
In the illustration above, beetroot contains nitrate (NOOO). Nitrate loses an oxygen atom and nitrite (NOO) is created. This is done through bacteria. It loses another oxygen atom and nitric oxide (NO) is created. These are examples of reduction reactions or losing-an-oxygen-atom reactions. In our current survey, nitric oxide (NO) can now react with a heam protein to cure the meat.
Nitric oxide (NO) can gain an oxygen atom to create nitrite (NOO) and nitrite can gain an oxygen atom to create nitrate (NOOO). There is another mechanism whereby nitric oxide (NO) gains two oxygen atoms at once and nitrate (NOOO) is created directly, skipping the formation of nitrite (NOO) completely. These are all examples of oxidation reactions or gaining-an-oxygen-atom reactions.
I add another graph to explain the various ways that oxidation and reduction take place of nitrate, nitrite and nitric oxide.
Changing Perceptions
Meat curing is no longer the only industry to recognise the importance of nitric oxide. It turns out the molecule vilified for hundreds of years as purportedly being bad for us, possesses some remarkable qualities which recently became the intense subject of scientific investigation. Without it, life is not possible and the reason why few people know about it is that it has only been discovered as late as the 1980s and 1990s.
Want to know more:
Nitric oxide turns out to be an extremely important molecule.
The Biologically Essential Molecule, Nitric Oxide; Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS)
Years ago, before the importance of nitric oxide was appreciated, consumers looked upon the fact that nitrite (which is very reactive and much more poisonous than nitrate) is used in food with great scepticism. They failed to understand that in nature N (nitrogen) easily and often becomes NO (nitric oxide), NOO (nitrite) or NOOO (nitrate or saltpetre). Also, NOOO (nitrate or saltpetre) often and easily becomes NOO (nitrite) and NO (nitric oxide). Where you find NO, chances are that you will also find NOO and NOOO. Likewise, where you find NOO, you will find NO and NOOO. This is a normal part of the functioning of the human body.
The fact that nitrite is poisonous must be qualified by the statement that nitrite is poisonous under certain conditions. What exactly those conditions are will become a major focus of our study, but simply to say that because something is poisonous under specific conditions, that it is dangerous to include it in food is itself a false assertion.
During this work, I will introduce a very important comparison namely between Oxygen and Nitrogen. Oxygen is like nitrogen in that under certain conditions it is toxic and can lead to death. In fact, it can be stated that ANY cell with a nucleus, as a normal process of the metabolism of the cell, generates both reactive species of oxygen and nitrogen. (Griendling, 2016)
We understand that even oxygen has unintended negative consequences such as ageing us and causing the ultimate demise of the body despite the fact that we recognise it as foundational to life on earth. The same two-edged sword experience is what we encounter in the discipline of curing and it is extremely important to understand it and responsibly ensure that no negative environment exists that may cause the nitrogen species to be harmful to humans in any shape or form.
The facts so far are crystal clear. Nitric Oxide (NO), the curing molecule, as its cousins of nitrate or saltpetre (NOOO) and nitrite (NOO) are essential to human and animal life and the functioning of our bodies. Nitrogen is probably no more or less dangerous than oxygen.
It’s Present in our Bodies!
Green et al, (1982) gave us these interesting results of nitrate and nitrite found in our urine, saliva, plasma, gastric juices and milk which points to the fact that these compounds are ever-present in the body. It is part and parcel of human physiology!
When discussing nitric oxide which we have seen as an essential part of our biology, or whether we are talking about nitrate or even nitrite, the first thing to grasp is that these molecules are naturally part of the human body and, as you can see from the table above, they are found in our saliva and our gastric juices. There are other places they are also found on the human body, but we will get to that later. A blanket statement such as that nitrite is bad for us we can unequivocally call an incorrect statement!
Conclusion
The curing molecule is Nitric Oxide. There are different ways to produce nitric oxide. One is to start with the more stable nitrogen salt, saltpetre or nitrate (NOOO). Bacteria use nitrate or saltpetre in respiration in the absence of air and nitrite is created (NOO). Nitrite comes into contact with chemical elements which facilitates the loss of another oxygen atom which brings nitric oxide about which reacts with the protein. It is this reaction that presents itself to us as creating a pinkish/ reddish colour. Nitric Oxide, an extremely important and versatile molecule is created in the human body through a chemical reaction with the amino acid, L-Arginine. This same reaction is also mediated through bacteria added directly to the meat and fermentation becomes a very productive method to cure meat without the use of sodium nitrate or nitrate. So, nitric oxide comes to us through that which our bodies produce naturally or through our diet when we ingest either nitric oxide, nitrates or nitrites.
The story of bacon is set in the late 1800s and early 1900s when most of the important developments in bacon took place. The plotline takes place in the 2000s with each character referring to a real person and actual events. The theme is a kind of “steampunk” where modern mannerisms, speech, clothes and practices are superimposed on a historical setting. Modern people interact with old historical figures with all the historical and cultural bias that goes with this.
Bacon is more than a culinary delight! The universe chose this humble dish to be my teacher. It took many years to prepare me so that I could receive its lessons. First I had to be disillusioned. From my earliest consciousness, I was totally engrossed in my experience of life. I was taught the human mental pictures of language, religion, family, nationalism, geography, sport, school, music, history, mathematics, poetry, woodwork, war and love. At first, I believed everything. Love was unconditional, deceit was foreign, and life was simple. I must have been six or seven when I started noticing cracks in aspects of my belief system. That the worldview I was being taught was at times at odds with real life.
I wanted to figure it out and started testing using simple experiments. The first step was always to understand the system. Initially, I completely immersed myself in it. I studied the systems from within and not as an objective onlooker. I then design experiments based on the internal logic of the system. If a and b, naturally should follow c. I would change a or b or sometimes both while observing for changes in c.
The Most Elemental
In my 20s as I discovered the work of Michael E Porter and under his influence I sharpened my investigative strategy. I sought to identify the most fundamental elements which determine the essential characteristic of anything whether it is physical or abstract. The next question was this – are the fundamental elements fixed? Do they exist objectively and independently and if not, what are the things that influence their particular set of characteristics? Almost always I found such characteristics to be conditional.
This testing of anything and everything of great value and interest to me became my single-minded quest to the exclusion of any other pursuit in life. I started to appreciate the unfathomable value of old traditions. The benefit of others, infinitely more able to analyse than myself with often years of experience which I did not have. Their voices came with clarity, filtered by the sands of time into a purity that I enjoyed in my current existence that is very noisy and distracted by everything that the modern world offers.
Mental constructs which were discredited through experimentation reappeared in different perspectives as I changed my angle of looking at them. For example, I started to value the formative influence that the Christian tradition had in my life by instilling the value of disciplines like archaeology and the interpretation of ancient texts. Within the Christian framework, I wrested with the distance between us and the ancients who wrote the bible. Using the same techniques I was able to very carefully discover a body of ancient knowledge that holds the key to much of the puzzle of meat curing. I am indebted to my Christian teachers for schooling me in these. On a side note, spirituality and my connection with the mysterious “unknown” grew and I later embraced it as a valuable part of my human experience and a rich way to connect to others.
The Fog of Antiquity
The time before writing existed has a fog that obscures it from us. I discovered that the fog of millions of years contains small particles of light and reflections and just as we can know the make-up of distant stars by analysing its light, so we can decipher the knowledge of the ancients by studying the particles of the fog of antiquity. I learned that knowledge is not only acquired by sight, smell, hearing and touch but by our entire being. An example of this is my quest to know the food traditions of ancient civilisations. In Africa, I want to know the food people ate. The transmission of recipes from mother to daughter is like reciting poems or songs and carries clues about ancient times not written down anywhere. Even where I have no ancient writing to fall back on or recipes handed down I discovered that by visiting the old settlements, now uninhabited, with only ruins remaining, sitting amongst these or walking through them – the ancients would speak to me till I can see the flames of the fires where woman are preparing supper and I smell the aroma of the ancient dishes.
It was not until my 38th birthday that powers greater than me determined that the crystal that would refrac the light of the reality of everything to me would be bacon. The new world of discovery started to open up, leading me into lands I could not imagine existed. All this through my pursuit of bacon which is so mundane that nobody has bothered to write the comprehensive story of its development. It became my teacher of the marvels of the natural world.
Meat Curing’s Ancient Origins
I love the unpretentious beginnings of meat curing which is the bedrock of bacon and ham. Its secrets were initially guarded by women before artisan guilds took over as custodians of its principles and practices. The curing of meat became intimately linked with the earliest desire of humans to explore far away from their habitation. When the horse was domesticated and long-distance travel became a thing as was already the case with long sea voyages, the curing of meat was essential to ensure nutrition thus enabling the fulfilment of a basic human desire for exploration and discovery. It made international trade possible as fleets and caravans of animals and people trading their commodities around the globe relied on its power to deliver nutrition. Other more unfortunate human characteristics were likewise enabled by meat curing – the desire to dominate. Cured meat would become the staple of armies for the building of empires.
It facilitated another basic human instinct of immortality, our final destination and our relationship with the departed. Here we get the first glimpse that bacon curing is not the application of an external preservative to food or colourant to meat. The curing of bacon and hams is not something done to the meat. It is unlocking secret powers inside the meat with the aid of salts or waters or what was naturally excreted from the human and animal bodies which would then facilitate the change in the essential nature of the meat. This change in the character of the meat made it last longer, taste delicious and caused the meat to “come to life again” by changing from a dull brown to a bright pinkish/ reddish colour. The ancients found that most of the excrements of the human and animal body namely sweat and urine were powerful agents to elicit this enigmatic change in meat.
Like the power of nature which allows huge and heavy ships, laden with many tonnes of produce, people and ammunition to stay afloat by natural forces that early humans did not fully understand; yet, they mastered its application – in the same way, the ancients could appreciate the fact that the curing of meat was something natural, intimately associated with the normal, healthy functioning of the human and animal body. In this sense, it was completely different from cooking a soup where different bits of ingredients are added or the baking of bread where heat cause the parts of the bread to clump together, rise and dry out to form a new, appetising whole.
The earliest cognitive and conscious humans recognised this. Since it could bring meat back to life, could this not prevent our deceased relatives and other loved ones from decaying? Bacon and hams, the curing of meat became the bedrock which allowed mummification to develop as stories from around the world were told by travellers of corpses in distant desert lands that do not undergo decay if they are exposed to particular salts, so powerful that thousands of years later we still have these naturally mummified bodies with us. They knew what salts caused this because women used the same salts in preserving meat. They started experimenting with the salts and applied them to the deceased with astonishing success, being able, not to bring the dead to life again, but to prevent decay!
The next progression naturally followed from the previous. If it could bring old meat back to life and safeguard the deceased from decay, surely this life-giving transformation must work for the living also. So, they incorporated it into the much-prized elixir of immortality. The quest to find a cocktail that would allow us to live forever and if we could not live forever, would have the ability to stay off the outwards ravages of old age at least for a time. They not only experimented with the salts responsible for curing. They applied the same bodily experiments of sweat, urine and saliva to the skin and bathed in it as is done to this day in India where cow urine is considered holy by some. They found that it kept the skin young and prevented acne in teens.
They observed that it indeed possessed life-giving power not just for the dead, but the living also. The same elements which stimulate meat curing can heal wounds and a host of other human ailments such as the relief of chest pain. Some were able to work out that by combining curing salts with saliva, for example, its potency is enhanced many times over.
Spices had the same effect on meat especially noticed by people living in the Mediterranean and the nations around the Black sea. To this day stories persist that these people can cure meat without the salts commonly associated with curing.
Meat Curing – A Life-Giving Principle?
The ancients knew that certain salts were not the only curing agents. The millions of years separating us from them means that this knowledge was lost except in a few isolated communities where certain aspects of the trade persist in salt-only long-term curing, spice curing in Italy and Spain and drying techniques in Turkey. These are however fragmented bits of knowledge viewed as oddities and nothing more. The wonder, the life-giving aspect revealed in meat curing has for the most part been lost.
Everything related to cured meat has, however not always been positive and some linked it with disease. Humans who do not understand that the answer to the fundamental question of the most basic realities of life is not fixed, started to make absolute pronouncements on matters which are relative, depending on multiple factors. Imminent scientists from the modern world report that people who consume cured meat tend to suffer from certain ailments. They made the fatal error of concluding that cured meat is unhealthy, causing cancer. In making this assertion, they chose to ignore the fundamental importance of the curing reaction to human and mammalian existence and the complex factors which make many foods turn against our bodies. They chose simple statements that obscure truth over the wonder of complexity.
In recent years through rigorous scientific investigation, the essential role of the curing reaction in meat has been elucidated. It was discovered that the curing reaction is essential to the functioning of the body of all animals, including humans. The body has the inherent ability to create the curing reaction in response to a host of diseases and invasive enemy microorganisms and viruses. More than a defence mechanism only, the curing reaction in the body generates chemical species involved in functions such as the signalling between different parts of the body.
Most recently we discovered that microorganisms, bacteria, in particular, can create the curing reaction in meat in a way that mimics the reactions created by what came to be known as curing salts, closely linked with how our bodies create the curing reaction without the aid of salts. In other words, certain bacteria, feeding on parts inherent in meat solicits the curing reaction in the same way as curing salts, plants, spices, waters and human bodily fluids such as urine, sweat and saliva do. The basic mechanism is the same as how the body creates these reactions “by itself!” This has been a remarkable discovery and ultimately answers the question if meat curing is possible without curing salts and for that matter, without spices or plant material or human or animal bodily fluids. The answer to this question is an overwhelming “yes!”
Can Something of Infinite Benefit be Harmful?
Let’s return to the question related to a possible link between cured meat and disease and ask the important question about the health effects of cured meat as follows. Is it possible that what has been known since antiquity as having great health benefits to humans, could have detrimental effects also? This of course relates to curing salts in particular. Can millions of years of human experience be wrong about cured meat? We already eluded to the answer. The resolution of the question is in the understanding of the interconnectedness of everything. That any classification of cured meat as cancer-causing is wrong in that it incorrectly presents the conclusion as an objective statement of truth which stands independent of any other fact while it is in reality at best only a conditionally true statement. Assigning cured meat with the designation of cancer-causing these scientists reveal a lack of understanding of the interconnectedness of life and a strawman position is presented about the modern curing industry. This is a very serious error as it portrays the false use of science.
Life taught me that even a false narrative is an opportunity to learn and grow and where I at first was annoyed by this wrong view I came to appreciate it. It intensified my own search for the conditions that make cured meat either good or bad. It forced me to look deeper than I would have done and to expose the fact that under certain conditions cured meat can be dangerous just as milk or water or oxygen can be harmful to the human body under certain conditions. More than anything, these false notions trusted me in the realm of nutrition. Bacon became the doorway that taught me about the relationship between humanity and our food.
My Teacher is Bacon!
Bacon became my teacher. Worlds opened up that have been lost to time, obscured in the fog of antiquity. Meat curing’s scope of influence is breathtaking. It aided almost every great human endeavour. The loss of this knowledge is tragic and I set out to tell its story from the perspective of my discovery of its secrets.
On my many travels around the globe, I wrote letters to my kids and colleagues recounting what I am learning. I present much of the work by publishing these letters, interspersed with chapters where I advance the storyline and explain essential detail. Like bacon, I also speak from a very specific environment that impacts the presentation of the facts. The southernmost tip of the great African continent became the backdrop of my discoveries and from here I set out on a global quest to learn how to make the best bacon on earth.
In the end, bacon not only taught me about health, nutrition and science but about my relationship with the entire human race and with my family. As Bacon taught me about life, the lessons reached into the most basic realities of my existence. Its story became my own story of love and life, tragedy and triumph, deceit and manipulation by others, respect and honour, great and enduring friendships and comradery.
What follows is the story of Bacon & the Art of Living!